Anti-Corrosion Properties of Polyaniline/Polyurethane Composite Coatings on Mild Steel Using Coconut-Based/PPG Blend Polyols

Author:

Bonilla Marjune Tamayo1,Ruda Archie Gomera1,Estrada Dave Joseph E.1ORCID,Ubas Kurt Sterling M.1,Mutia Aaron Andrew B.1,Lubguban Arnold A.1,Capangpangan Rey Y.2,Labis Joselito P.3,Tilendo Amierson C.2,Sayson Noel Lito B.1,Alguno Arnold C.1ORCID

Affiliation:

1. MSU-Mindanao State University – Iligan Institute of Technology (IIT)

2. MSU-Mindanao State University

3. King Saud University

Abstract

Polyurethane coating has been widely used as a protective coating due to its wide range of mechanical strength, excellent abrasion resistance, toughness, low-temperature flexibility, and chemical resistance, simplicity in production and application, and superior protection on corrosion to mild steel. No studies have been reported utilizing coconut-based/PPG blend polyols to produce polyurethane-based protective coatings on mild steel. Therefore, in this work, we fabricated polyurethane-based protective coating using coconut-based/PPG blend polyols for anti-corrosion application. Due to low adhesion strength of Polyurethane-based protective coating, the incorporation of nano-fillers into the polymer matrix improved the adhesion strength of the coating due to its functional benefits and its effects gave rise to increased intermolecular bonding, hydrogen bonding, van der waals, magnetism, and surface energy. Therefore, we fabricated PANI/PU composite coatings with varied amounts of polyaniline nanoparticles on mild steel using coconut-based/PPG blend polyols exposed in 3.5 wt% NaCl aqueous solution for anti-corrosion application. Characterizations like Fourier Transform Infrared Spectroscopy (FTIR), Potentiodynamic Polarization (Tafel plot), contact angle, adhesion test, FESEM, XRD, and UV-VIS were used in this study. Tafel plot revealed that PU-based and PANI/PU composite coatings exhibited a significant reduction in corrosion current density (Icorr), perhaps due to the adsorption of inhibitor in the surface of the mild steel which reduced corrosion rate of the metal by retarding the anodic process and impeding the corrosive species from the surroundings. Among all fabricated coatings, 0.5-PANI/PU composite coating was the best, having a less corrosion rate of 5.66x10-5 mmpy compared to others. In addition, its surface was more compact, smooth, rigid, and no voids present at the interface according to the result of FESEM, suggesting better corrosion protection to mild steel. Hence, PU-based protective coating and PANI/PU composite coatings using coconut-based/PPG blend polyols inhibited the penetration of the corrosive species and served as an adequate barrier protection against corrosion for mild steel.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3