Author:
Tamang Sonam, ,Wutzler André,Lach Ralf,Grellmann Wolfgang,Hai Le Hong,Adhikari Rameshwar,Shrestha Sabita, , , , , , , , , ,
Abstract
Multi-walled carbon nanotubes and graphite nanoplatelets were functionalized via acid treatment to overcome the problem of agglomeration. Fourier transform infrared spectroscopy showed the chemical modification of the nanocarbons while the general relationship between the chemical treatment and the defects population was analyzed by Raman spectroscopy. The information regarding the mass loss and impurities is obtained from the thermogravimetric analysis. X-ray diffraction showed the effect of acid treatment on the physical states of the nanocarbons including the crystalline texture. The comparative high interlayer distance in graphite suggested that graphite particles are exfoliated into sheets of graphene by this technique with smaller particle sizes. The thermogravimetric analysis confirmed the complete removal of impurities in the case of multi-walled carbon nanotubes (MWCNTs) and about 20 % of impurities as seen in oxidized graphite attributable to the presence of residual manganese that might have been introduced during the functionalization process. Moreover, the thermal stability was also observed well in the case of MWCNTs with lesser impurities left. Overall, two different nanocarbons with well-structured chemical modifications were obtained with a variation in the feasibility of functionalization.
Publisher
Lviv Polytechnic National University
Subject
General Chemical Engineering,General Chemistry