Author:
Norouzi Nima, ,Talebi Saeed,
Abstract
This paper aims to quantify the rate of improvement of electrical energy due to oxygen enrichment. For a specific membrane effective area (MEA), the flow field (FF) designer is always ready to design the FF to maximize the amount of oxygen in all areas of the catalyst layer (CL). Using the guidelines in this paper, FF designers, without cumulative computational fluid dynamics (CFD) calculations, can predict the rate of electrical energy gain due to 1 % enrichment in the amount of oxygen present in the CL. A 3D CFD tool was used to answer this question. These three constant steps of the reaction product simulate the humidified air mixture at the proton exchange membrane fuel cell (PEMFC). Results show that the analytic methods and the dynamic computational method introduced in this paper are similar in results, and the error of the CFD model is about 1.9 % compared to the analytic method.
Publisher
Lviv Polytechnic National University
Subject
General Chemical Engineering,General Chemistry
Reference25 articles.
1. [1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009
2. [2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358.
3. [3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul.
4. [4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251
5. [5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献