Author:
Semenyuk Natalia, ,Dudok Galyna,Skorokhoda Taras,Bratychak Jr. Mykhailo,Sadova Uliana,Skorokhoda Volodymyr, , , , ,
Abstract
The regularities of obtaining silver nanoparticles in the presence of polyvinylpyrrolidone, which was both a reductant and a stabilizer of nanoparticle dispersion, have been studied. The influence of such factors as temperature, polyvinylpyrrolidone amount, concentration and nature of silver salts on the shape and size of nanoparticles has been established. The chemistry of the silver salts and polyvinylpyrrolidone reaction with the formation of vinylsuccinimide units in the structure of macromolecules has been proposed, which is confirmed by the results of IR spectroscopy. It has been established that the shape and size of silver nanoparticles are influenced by the silver salt nature. If silver nitrate is used for the reduction reaction, silver nanoparticles are formed mainly in the form of triangular prisms and polyhedra. When using silver acetate, nanoparticles of spherical shape are predominantly formed. High-quality nanoparticles are formed if the mass ratio of polyvinylpyrrolidone : silver salt is more than 20. The decrease in this ratio deteriorates the stabilization of the formed nanoparticles and increases the particle size of silver until the formation of nanocrystals several hundred nanometers in size. The kinetics of silver salts and polyvinylpyrrolidone reaction has been studied in a solution. The reaction was found to occur faster with increasing temperature and the polyvinylpyrrolidone amount. Silver reduction reaction by polyvinylpyrrolidone was used to provide fungibactericidal properties of hydroxyapatite-filled osteoplastic porous composites based on polyvinylpyrrolidone copolymers with methacrylic esters.
Publisher
Lviv Polytechnic National University
Subject
General Chemical Engineering,General Chemistry
Reference16 articles.
1. [1] Owen, G.Rh.; Dard, M.; Larjava, H. Hydoxyapatite/beta-tricalcium Phosphate Biphasic Ceramics as Regenerative Material for the Repair of Complex Bone Defects. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106(6), 2493-2512. https://doi.org/10.1002/jbm.b.34049
2. [2] Masyuk, А.S.; Kysil, Kh.V.; Katruk, D.S.; Skorokhoda V.I.; Bilyi L.M.; Humenetskyi ,Т. V. Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. J. Mater. Sci. 2020, 56, 319-326. http://doi.org/10.1007/s11003-020-00432-y
3. [3] Masyuk, А.S.; Levytskyi, V.E.; Kysil, Kh.V.; Bilyi, L.М.; Humenetskyi, T.V. Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. J. Mater. Sci. 2021, 56, 870-876. https://doi.org/10.1007/s11003-021-00506-5
4. [4] Hernigou, P.; Dubory, A.; Pariat, J.; Potage, D.; Roubineau, F.; Jammal, S.; Flouzat Lachaniette, C.H. Beta-Tricalcium Phosphate for Orthopedic Reconstructions as an Alternative to Autogenous Bone Graft. Morphologie 2017, 101, 173-179. https://doi.org/10.1016/j.morpho.2017.03.005
5. [5] Skorokhoda, V.I; Semeniuk, N.B.; Dziaman, I.Z.; Levytska, Kh.V.; Dudok, H.D. Vplyv pryrody kaltsiievmisnoho napovniuvacha na zakonomirnosti oderzhannia ta vlastyvosti osteoplastychnykh porystykh kompozytiv. Vopr. him him. tehnol. 2018, 2, 101-108.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献