Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface

Author:

Dutka Volodymyr, ,Oshchapovska Nataliya,

Abstract

Oligomeric peroxide adsorption of sebacic acid on aerosil and magnesium oxide was studied. Adsorption process parameters were found. It is shown that the adsorption takes place through the hydrogen bonds formation between OH– groups of adsorbents surface and peroxide groups. The adsorption process suggests the behavior of peroxide compounds on the water-air phase’s interface. Monomolecular film formations on water surface for oligomeric peroxides were studied. It was found that calculated values of the area extrapolated to zero pressure (S0) depend on the solvent which was used to apply the peroxide in the phases interface. Oligomeric peroxide monolayers considered as condensation-type monolayers. Thermal decomposition of oligomeric peroxide and its di- and monoperoxide analogues was studied. It was shown that total constants of thermal degradation rate k for oligomeric peroxide are higher than those for di- and monoperoxide analogues. There is a correlation between S0 calculated values and the constants of thermal degradation rate for oligoperoxide. The less is S0 value the higher is k value. The conformational state of the macromolecule was preserved during transferring the oligomeric peroxide solution in an organic solvent to the phases interface that affects k values.

Publisher

Lviv Polytechnic National University

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3