Non-autoclaved foam concrete for layers of highways surface dressing

Author:

Hornikovska IrynaORCID, ,Kahanov VadymORCID,

Abstract

The article is devoted to the problems associated freeze with the calculated estimation of the parameters of the structural and heat-insulating antifreeze layer in the subgrade of non-rigid roads on various soil bases. The main physical, technical and deformation characteristics of monolithic dispersed non-autoclaved foam concrete reinforced with polypropylene fiber of grades of density from 600 to 1000 kg/m3 are investigated. Freezing of subsoil waters directly under the roadway pavement and, as a result, its increase in volume, leads to significant deformations of the road surface. Under such conditions, the period of defectfree operation of the roadway pavement is significantly reduced, which in turn leads to the need to repair it in a more intensive mode. One of the ways to reduce the operating cost and maintenance costs of the road transport infrastructure is to introduce into the design and construction practice new structural concepts for road surface dressing that ensure high quality pavement during the normative operational period. This can be achieved by introducing an effective heat-insulating material into the pavement structure as an anti-frost layer in order to elimi-nate the effect of frost lift of the roadway pavement of non-rigid roads. Since domestic and foreign experience freeze in the road construction has proven the effectiveness of the use of heatinsulating materials in the road surface dressing construction, in recent years in Ukraine there has been increased interest in the use of non-autoclaved foam concrete as a modern and highly effective heat-insulating material in road construction. The installation of a heat-insulating layer made of non-autoclaved foam concrete allows us to completely or partially prevent freezing or overheating of the surface dressing base, reduce the influence of periodic variations in environmental temperature, which in turn will increase the durability of the pavement structure. The publication presents nomograms for determining the optimal thickness of the heat-insulating anti-frost heavy course (layer) of road surface dressing (based on sand, loamy sand, clay and loam) done at the street and road network for all climatic and geographical regions of Ukraine.

Publisher

Lviv Polytechnic National University

Reference12 articles.

1. Application of Foamed Concrete in Road Pavement - Weak Soil System;Kadela;Procedia Engineering,2017

2. Verba V., Hornikovska I., Demchyna K., Volotsiuha V., Holyk V. (2012). The relationship of strength and deformation characteristics of non-autoclaved foam concrete. Bulletin of the Donetsk Na-tional Academy of Civil Engineering and Architecture "Modern Industrial and Civil Engineering", Book No. 8, Issue No. 1, pp. 28-35

3. Fedorowicz L., Kadela M., Bednarski Ł. (2014). Modeling foam concrete behavior in layered constructions cooperating with the subsoil. Scientific notebooks of the technical school in Katowice, Issue No. 6. - pp. 73-81.

4. Doroshenko O., Doroshenko Yu., Chyzhenko N. (2006). Fiber concrete as an effective mate-rial for transport construction. Journal "Road Transporter аnd Road Constructor of Ukraine", Issue No. 6, pp. 29-32.

5. Pukharenko Yu. (2006). Properties and prospects of the use of cellular fiber-reinforced con-crete. Popular Concrete Science, St. Petersburg, Issue No. 4, pp. 50-53.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3