THE RESEARCH OF CIRCULATION WATER SUPPLY SYSTEM OF POWER UNIT OF THERMAL POWER PLANT WITH HELLER COOLING TOWER

Author:

Bosak MykolaORCID, ,Hvozdetskyi OleksandrORCID,Pitsyshyn BohdanORCID,Vdovychuk SerhiiORCID, , ,

Abstract

Analytical hydraulic researches of the circulating water cooling system of the power unit of a thermal power plant with Heller cooling tower have been performed. Analytical studies were performed on the basis of experimental data obtained during the start-up tests of the circulating water cooling system of the “Hrazdan-5” power unit with a capacity of 300 MW. Studies of the circulating water cooling system were carried out at an electric power of the power unit of 200 - 299 MW, with a thermal load of 320 - 396 Gcal/hr. By circulating pumps (CP), water mixed with condensate is fed to the cooling tower, from where it is returned through the turbine for spraying by nozzles in the turbine steam condenser. An attempt to increase the water supply to the condenser by increasing the size of the nozzles did not give the expected results. The amount of the water supply to the circulating pumping station depends on the pressure loss in the circulating water cooling system. The highest pressure losses are in hydro turbines (HT), which are part of the circulating pumping station. Therefore, by adjusting the load of the hydro turbine, with a decrease in water pressure losses, you can increase the water supply by circulating pumps to the condenser. Experimental data and theoretical dependences were used to calculate the changed hydraulic characteristics of the circulating water cooling system. As a result of reducing the pressure losses in the section of the hydro turbine from 1.04 to 0.15 kgf/cm2, the dictating point for the pressure of circulating pumping station will be the turbine steam condenser. The thermal power plant cooling tower is designed to service two power units. Activation of the peak cooler sectors of the cooling tower gives a reduction of the cooled water temperature by 2-4 °С only with the spraying system.

Publisher

Lviv Polytechnic National University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3