Failure analysis of a motor vehicle suspension helical spring

Author:

Bohun LidiaORCID, ,Pleshakov EduardORCID,Shvachko SergiyORCID, ,

Abstract

The purpose of this work is to reveal the cause of the failure of the motor vehicle rear suspension barrel-shaped spring with the progressive elasticity characteristic and predict measures to increase the lifetime of springs of this type. The fracture of the spring occurred on the middle coil, which operates under conditions of more severe stress in comparison with other coils. The chemical composition of the spring material, determined by X-ray fluorescence spectral and microstructural analyzes, corresponded to chromium-silicon steel 54SiCr6. In terms of structure and mechanical properties, the spring material met the standards. No traces of decarburization were detected, and no crack initiation, caused by non-metallic inclusions, was found in the material of the fractured spring. Macroscopic examination of the spring surface did not reveal any cracks, scratches, dents, traces of blows with stones and marks of spring coiling tool. Instead, extensive areas of exfoliation of the protective coating were found. The metallographic analysis revealed selective corrosion in the form of pitting damage in places of exfoliation of the protective coating. The fatigue crack propagates from the certain deep pit with the reorientation of the crack plane along the spiral surface to the central axis of the coil wire. After depletion of the safety margin, the spring broke down quickly. The fast fracture zone contains steps of the river pattern formed due to the spiral reorientation of the fracture surface. The research can be used to understand the importance of adhesive strength and wear resistance of protective coatings on the spring surface. Their local exfoliation causes subsequent corrosion damage to the spring, which stimulates its fatigue fracture.

Publisher

Lviv Polytechnic National University

Reference28 articles.

1. [1] O.A. Fenenko, "Defekty prujin podveski transportnogo sredstva i protsessy, privodyaschie k nim" ["Defects in vehicle suspension springs and processes leading to them"], Visnyk Kharkivsʹkoho natsionalʹnoho tekhnichnoho universytetu silʹsʹkoho hospodarstva imeni Petra Vasylenka [Bulletin of the Petro Vasylenko Kharkiv National Technical University of Agriculture], vol. 167, pp. 92-99, 2016. [in Russian].

2. [2] O.A. Fenenko, and M.A. Oksentyuk, "Vliyanie vneshnih faktorov na prosadku prujin podveski transportnogo sredstva" ["The influence of external factors on the subsidence of the vehicle suspension springs"], Zbirnyk naukovykh prats Kharkivskoho natsionalnoho universytetu povitrianykh syl [Collected scientific works of Kharkiv National Air Force University], vol. 52, issue 3, pp. 118-120, 2017. [in Russian].

3. [3] Y. Prawoto, et al., "Design and failure modes of automotive suspension springs", Engineering Failure Analysis, vol. 15, pp. 1155-1174, 2008.

4. [4] Y. Chaubey, C. Kumar, and S. Chauban., "Failure analysis of suspension coil spring for passenger car through SEM microstructure investigation", International Journal of Innovations in Engineering and Technology, vol. 7, issue 1, pp. 82-87, June 2016.

5. [5] M.A. Yar, et al., "Corrosion behaviour of an industrial shot-peened and coated automotive spring steel AISI 9254", Сorrosion Engineering, Science and Technology, vol. 53, no. 8, рр. 564-573, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3