ACHIEVING THE REQUIRED MACHINING ACCURACY BY CORRECTING ERRORS USING VARIABLES OF PARAMETRIC FUNCTIONS

Author:

,Leshchenko OleksandrORCID,Dyshev OleksandrORCID,

Abstract

Nowadays, the machine-building complex is actively saturated with high-tech equipment, without which an enterprise cannot enter the global market or keep up with its competitors. And it's not just about using systems with artificial intelligence elements as scientific and technical solutions to improve quality and reduce production costs. It is also about reducing the time required to prepare products for production and bringing them to the consumer ahead of schedule. Today, the most preferred method in the competitive struggle is to equip CAD/CAM production with computer-aided design systems. With their help, engineering and technology services cannot only design models of new products but also generate CNC control software for manufacturing parts on CNC machines. At the same time, program frames composed in G-codes have several drawbacks, the main one being a "rigid" algorithm of action, i.e., the lack of variability for final solutions when the required accuracy is achieved by correcting the numerical values of the coordinates of the points of formation of individual surfaces in the PC. In this case, the operator largely intuitively corrects individual program frames based on his or her own experience, which is almost impossible without appropriate calculations for controllers with linear-circular and angular motions. In addition, after some such changes, the program loses its geometric adequacy to the part drawing, and by correcting one element of the shaped profile, we invariably violate the laws of contact with neighboring elements specified in the drawing. The paper considers the analytical geometry apparatus that allows a line on a double curvature surface, the theoretical trajectory of tool movement, to be represented not as a set of scalar points but in a vector representation, considering its possible torsion. This approach is ensured by parametric programming with computational frames of point coordinates and logical transitions, determining the angles of inclination of the cutter axis relative to the normal to the surface in the case of multi-axis machining. However, the main advantage of this method is the ability to correct processing errors not by local changes in the numerical values of the coordinates, but by introducing correction coefficients into the equation of the shape formation trajectory - reactors for the appearance of errors in the shape or location of surfaces, arising, for example, from elastic movements. The value of the coefficients per group of personnel can be set in the process of research and industrial production and change depending on the properties of the blanks. For example, according to the current standards, variations in hardness of up to 10-12% were allowed for the blanks of rolling mill rolls. The article presents the experimental data of the research of the correction task in a parametric form and the results of their application for machining parts with radius cutters in real production..

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3