Simulation and analytical studies of chip formation processes in the cutting zone of titanium alloys

Author:

Stupnytskyy VadymORCID, ,She XianningORCID,Dragašius EgidijusORCID,Baskutis SauliusORCID,Prodanchuk OlehORCID, , , ,

Abstract

The low machinability of titanium alloys is determined by the physical, mechanical, and chemical properties of these materials and their mechanical characteristics. It is also evident in the hardened state of the material being processed during cutting, as well as in the initial state. This phenomenon is caused by thermodynamic parameters that determine the properties of titanium material at elevated temperatures. The peculiarities of the cutting and chip formation processes during titanium alloy machining are presented in this article. The peculiarity of the described approach is the analysis of the results of simulation modeling of cutting in Deform 2D software. It is proved that the frictional factor in the formation of the thermal characteristics of the cutting process, which arises as a result of the chip sliding along the tool, dominates the load factor (caused by force and deformation processes in the chip root). It has been established that the length of contact between the chips and the tool’s rake face has a certain tendency to change: the contact length first increases and then decreases with increasing cutting speed. An analysis of the dependence of the chip compression ratio on changes in cutting speed has shown that with an increase in cutting speed, the average value of the compression ratio practically does not change, but the amplitude of its oscillation increases significantly, which is equivalent to a change in the shear angle. This parameter changes dynamically due to the adiabatic nature of chip formation

Publisher

Lviv Polytechnic National University

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3