Simulation modelling of dynamic processes due discontinuous frictional treatment of the flat surfaces

Author:

Gurey VolodymyrORCID, ,Korendiy VitaliyORCID,Kuzio IhorORCID, ,

Abstract

Friction treatment refers to surface strengthening (hardening) methods using highly concentrated energy sources. In the course of this processing in the surface layers of the processed surfaces of parts the strengthened layer with nanocrystalline structure is formed. The formed layer has specific physical, mechanical, chemical properties, as well as improved performance properties, which are significantly different from the base metal. A highly concentrated energy source is formed in the contact area of the tool-part due to the high-speed friction (60–90 m/s) of the tool on the treatment surface. Frictional treatment of flat parts according to the kinematics of the process is similar to grinding. The strengthening process was carried out on an upgraded surface grinder. The tool is a metal disk made of stainless-steel. Transverse grooves are formed on the working surface of the tool to intensify the process of forming a strengthened (reinforced) layer with a nanocrystalline structure. The grooves form additional shock loads in the contact area of the tool-treatment surface of the part. These shock loads increase the shear deformation of the metal of the parts’ surface during treatment, which affects into formation the quality parameters of the parts’ surface and surface layer. To study the friction treatment process, the calculation scheme of the elastic system of the machine was developed. A simulation model for the study of dynamic processes that take place during the friction treatment of flat surfaces was built. This model gives possibility to determine the displacements and velocities of the machine table on which the part is fixed and the tool, and to determine their mutual displacement and also calculate the reaction of the machine table.

Publisher

Lviv Polytechnic National University

Reference10 articles.

1. [1] K.A. Yushchenko, et al., Inzheneriya poverhni [Surface engineering]. Kyiv, Ukraine: Naukova dumka Publ., 2007. [in Ukrainian].

2. [2] V.D. Evdokymov, L.P. Klymenko, and A.N. Evdokymova, Tekhnologiya uprochneniya mashynostroitelnych materialov [Hardening technology for engineering materials]. Odessa-Nykolaev, Ukraine: Yzd-vo NHHU im. Petra Mohyly, 2005. [in Russian].

3. [3] F. Mojtahedi, H. Shahverdi, and M.J. Torkamany, "Surface treatment of nano-structured steel with pulsed laser", Materials Physics and Mechanics, no. 17, pp. 17-21, 2013.

4. [4] S. Soundarapandian, and B. Dahotre Narendra, "Laser Surface Hardening", Steel Heat Treating Fundamentals and Processes, vol. 4A., pp. 476-502, 2013.

5. [5] X. Huang, at al., "Experimental research material characteristics effect on white layers formation in grinding of hardened steel", The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1555-1561, 2013.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3