The Use of Solid State NMR to Characterize High Density Polyethylene/Organoclay Nanocomposites

Author:

Rodrigues Tathiane, ,Tavares Maria,Soares Igor,Moreira Ana,Ferreira Antonio, , , ,

Abstract

Recently the development of new materials, in special polymeric nanocomposites, formed by polymer and layered silicates, have gained attention. In this work nanocomposites based on high-density polyethylene matrix (HDPE) and organically modified clay were prepared by melt processing and characterized by the determination of proton spin-lattice relaxation time through solid state nuclear magnetic resonance (NMR) spectroscopy. This work has a proposal to add one quantitative technique to help the researchers to better evaluate polymeric nanocomposite, because NMR is an important tool employed to study both molecular structure and dynamic molecular behavior. The nanocomposites were mixed in a twin-screw extruder, varying the shear rate parameter: 60 and 90 rpm at 463 K. Nanocomposites obtained were characterized through X-ray diffraction; thermal analysis; impact resistance and nuclear magnetic resonance. The T1H results showed that the samples present different molecular domains according to the clay dispersion, forming an intercalated and/or exfoliated nanocomposites. The measurement of relaxation time, using low field NMR, is a useful method to evaluate changes in the molecular mobility of nanocomposite and can infer whether the sample is exfoliated and/or intercalated, since lamellar filler is used.

Publisher

Lviv Polytechnic National University

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3