Algorithm for determining inclusion parameters in solving inverse problems of geoelectrical exploration using the profiling method

Author:

Zhuravchak Liubov, ,Zabrodska Nataliya,

Abstract

The paper aims to develop an algorithm for recognizing the physical and geometric parameters of inclusion, using indirect methods of boundary, near-boundary, and partially-boundary elements based on the data of the potential field. Methodology. The direct and inverse two-dimensional problems of the potential theory concerning geophysics were solved when modeling the earth's crust with a piecewise-homogeneous half-plane composed of a containing medium and inclusion that are an ideal contact. To construct the integral representation of the solution of the direct problem, a special fundamental solution for the half-plane (Green's function) of Laplace's equation, which automatically satisfies the zero-boundary condition of the second kind on the day surface, and a fundamental solution for inclusion were used. To find the intensities of unknown sources introduced in boundary, near-boundary, or partially-boundary elements, the collocation technique was used, i.e. the conditions of ideal contact are satisfied in the middle of each boundary element. After solving the obtained SLAE, the unknown potential in the medium and inclusion and the flow through their boundaries are found, considering that the medium and inclusion are considered as completely independent domains. Results. The computational experiment for the task of electric prospecting with a constant artificial field using the resistance method, in particular, electrical profiling, was carried out, while focusing on the physical and geometric interpretation of the data. Initial approximations for the electrical conductivity of the inclusion, its center of mass, orientation and dimensions are determined by the nature of the change in apparent resistivity. To solve the inverse problem two cascades of iterations are organized: the first one is to specify the location of the local heterogeneity and its approximate dimensions, the second one is to specify its shape and orientation in space. At the same time, the minimization of the functional considered on the section of the boundary, where an excess of boundary conditions is set, is carried out. Originality. The method of boundary integral equations is shown to be effective for constructing numerical solutions of direct and inverse problems of potential theory in a piecewise homogeneous half-plane, using indirect methods of boundary, near-boundary, and partial-boundary elements as variants. Practical significance. The proposed approach for solving the inverse problem of electrical exploration with direct current is effective because it allows fora step-by-step, "cascade" recognition of the shape, size, orientation, and electrical conductivity of the inclusion. We follow the principle of not using all the details of the model and not attempting to recognize parameters with little effect on the result, especially with imprecise initial approximations.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3