Theory of continental drift – causes of the motion. Outline of the theory

Author:

Kalenda Pavel, ,Neumann Libor,Wandrol Ivo,Procházka Václav,Ostřihanský Lubor, , , ,

Abstract

The theory of mantle convection currents as the cause of lithospheric plate movements has several major problems, including the absence of an adequate energy source. As shown in our previous contribution, an unbiased interpretation of geochemical data does not support the assumptions of a significant amount of radionuclides in the lower mantle or even in the core. It is our assertion that solar radiation is the primary energy source in the lithosphere. This energy is converted into mechanical energy via thermoelastic waves, even in depths with minimal temperature fluctuations. This has been confirmed by various methods of continuous stress measurement. The periodic and quasiperiodic thermoelastic reversible deformations, such as the circadian and annual cycles (including tidal periods), can also cause irreversible deformations due to the ratcheting mechanism. The 2D model showed that the strength limit is exceeded in 0.3 % of all diurnal cycles during the year. As a consequence, continents tend to extend while the oceanic lithosphere is pushed and overthrusted between continents. The middle-ocean ridges, similar to continental rifts, are filled by ascending magma which is one example of the ratcheting mechanism. The final plate movements are determined by the distribution of major continents and the overall westward drift of the lithosphere, which is slower for deep-rooted plates like the Indian one. Large asteroid impacts are important triggers (and possibly significant energy sources) of discrete events, like the formation of hotspots and large igneous provinces.

Publisher

Lviv Polytechnic National University

Subject

Industrial and Manufacturing Engineering,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3