DEVELOPMENT OF A METHOD FOR INVESTIGATING CYBERCRIMES BY THE TYPE OF RANSOMWARE USING ARTIFICIAL INTELLIGENCE MODELS IN THE INFORMATION SECURITY MANAGEMENT SYSTEM OF CRITICAL INFRASTRUCTURE

Author:

Partyka A.,Harasymchuk O.,Nyemkova E.,Sovyn Y.,Dudykevych V.

Abstract

In this article the authors focused on analyzing the possibilities of using artificial intelligence models for effective detection and analysis of cybercrimes. A comprehensive method using artificial intelligence algorithms such as Random Forest and Isolation Forest algorithms is developed and described to detect ransomware which is one of the main threats to information security management systems (ISMS) in the field of critical infrastructure. The result of the study is the determination of the compatibility of such methods with the requirements of ISO 27001:2022 emphasizing the importance of integrating innovative AI technologies into already existing security systems. In addition the article analyzes the potential advantages of such integration including compliance with the requirements of international information security frameworks. Keywords: Isolation Forest Random Forest critical infrastructure information security management system ISO 27001 cyber security cyber security standard cybercrime ISMS ransomware siem edr security monitoring antivirus machine learning computer networks information systems.

Publisher

Lviv Polytechnic National University

Reference13 articles.

1. Jack Hughes, Sergio Pastrana, Alice Hutchings, Sadia Afroz, Sagar Samtani, Weifeng Li, and Ericsson Santana Marin. 2024. The Art of Cybercrime Community Research. ACM Comput. Surv. 56, 6, Article 155 (June 2024), 26 pages. DOI:10.1145/3639362. (Дата звернення: 01 Березня 2024).

2. TVARONAVIČIENĖ, Manuela; PLĖTA, Tomas; DELLA CASA, Silvia. Cyber security management model for critical infrastructure protection. In: Proceedings of the Selected papers of the International Scientific Conference “Contemporary Issues in Business, Management and Economics Engineering. 2021. DOI: 10.3846/cibmee.2021.611. (Дата звернення: 01 Березня 2024).

3. SARKER, Iqbal H.; FURHAD, Md Hasan; NOWROZY, Raza. Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Computer Science, 2021, 2: 1-18. DOI: 10.1007/s42979-021-00557-0. (Дата звернення: 01 Березня 2024).

4. TAO, Feng; AKHTAR, Muhammad Shoaib; JIAYUAN, Zhang. The future of artificial intelligence in cybersecurity: A comprehensive survey. EAI Endorsed Transactions on Creative Technologies, 2021, 8.28: e3-e3. DOI: 10.4108/eai.7-7-2021.170285. (Дата звернення: 01 Березня 2024).

5. Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. 2022. A Survey on Ransomware: Evolution, Taxonomy, and Defense Solutions. ACM Comput. Surv. 54, 11s, Article 238 (January 2022), 37 pages. DOI: 10.1145/3514229. (Дата звернення: 01 Березня 2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3