CONCEPTUAL APPROACH TO DETECTING DEEPFAKE MODIFICATIONS OF BIOMETRIC IMAGES USING NEURAL NETWORKS

Author:

Mykytyn K.,Ruda K.

Abstract

The National Cybersecurity Cluster of Ukraine is functionally oriented towards building systems to protect various platforms of information infrastructure including the creation of secure technologies for detecting deepfake modifications of biometric images based on neural networks in cyberspace. This space proposes a conceptual approach to detecting deepfake modifications which is deployed based on the functioning of a convolutional neural network and the classifier algorithm for biometric images structured as 'sensitivity-Yuden index-optimal threshold-specificity'. An analytical security structure for neural network information technologies is presented based on a multi-level model of 'resources-systems-processes-networks-management' according to the concept of 'object-threat-defense'. The core of the IT security structure is the integrity of the neural network system for detecting deepfake modifications of biometric face images as well as data analysis systems implementing the information process of 'video file segmentation into frames-feature detection processing - classifier image accuracy assessment'. A constructive algorithm for detecting deepfake modifications of biometric images has been developed: splitting the video file of biometric images into frames - recognition by the detector - reproduction of normalized facial images - processing by neural network tools - feature matrix computation - image classifier construction. Keywords: biometric image deepfake modifications neural network technology convolutional neural network classification decision support system conceptual approach analytical security structure.

Publisher

Lviv Polytechnic National University

Reference15 articles.

1. Kietzmann J., Lee L. W., McCarthy I. P., and Kietzmann T. C., Deepfakes: Trick or treat? Business Horizons, vol. 63(2), pp. 135-146, 2020. DOI: 10.1016/j.bushor.2019.11.006

2. Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, p.188, 2021. DOI: https://doi.org/10.15587/978-617-7319-31-2

3. Стратегія кібербезпеки України (2021-2025), [Електронний ресурс] Available at: https://www.rnbo.gov.ua/files/2021/STRATEGIYA%20KYBERBEZPEKI/proekt%20strategii_kyberbezpeki_Ukr.pdf. (Accessed: 19 March 2024)

4. Karpinski M, Khoma V., Dudvkevych V., Khoma Y. and Sabodashko D., "Autoencoder Neural Networks for Outlier Correction in ECG- Based Biometric Identification", 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), pp. 210-215, 2018. DOI: 10.1109/IDAACS-SWS.2018.8525836

5. Rybalskyi O. V., Soloviev V. Y., “On the development of the theory, methods and means of conducting the examination of digital photo, video and sound recording materials, methods and means of conducting the examination of digital photo, video and sound recording materials”. Modern Special Technique, vol. 3 (30), pp. 119–121, 2012, (in Russian). Available at: http://nbuv.gov.ua/UJRN/sstt_2012_3_19 (Accessed on 19 March 2024)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3