DEVELOPMENT OF A HYBRID METHOD FOR DATA WAREHOUSE CONSTRUCTION

Author:

Koval O.,Harasymchuk O.

Abstract

The examined approach to building an adaptive and convenient data warehouse goes beyond simple data storage focusing on processing data for various types of reports and analytics. It allows for more efficient use of data resources and ensures a flexible response to changing business needs. This hybrid method combines several techniques and technologies to provide the best possible performance and scalability. The article discusses the main challenges and benefits of this approach and presents a detailed analysis of the architecture and components of the proposed data warehouse system. The results show significant improvements in data processing speed and accuracy compared to traditional methods. Key words: data warehouse hybrid method data processing scalability.

Publisher

Lviv Polytechnic National University

Reference15 articles.

1. Minukhin, S., Fedko, V., & Gnusov, Y. Enhancing the performance of distributed big data processing systems using Hadoop and PolyBase. Eastern-European Journal of Enterprise Technologies, 4(2–94), (2018). pp. 16–28. •DOI:10.15587/1729-4061.2018.139630.

2. Praveen Kumar, Dr. Kavita The Study On Data Warehousing Different Concepts Vol. 21 No. 16 (2019), pp.3103-3109/. Available at: http://gujaratresearchsociety.in/index.php/JGRS/article/view/3497 (Accessed: 10 March 2024).

3. W. H. Inmon. Building the Data Warehouse,3rd Edition (3rd. ed.). John Wiley & Sons, Inc., USA. 2002. Avaible at: https://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/DataWH/ Bulding%20the%20Data%20Warehouse%204%20Edition.pdf (Accessed: 10 March 2024)

4. Bhatia, P. (2019) Data Mining and Data Warehousing: Principles and Practical Techniques. Cambridge University Press, Cambridge. •DOI:10.1017/9781108635592.

5. Padmaja Potinen/ Oracle Database Data Warehousing Guide, 21c. Copyright © 2001, 2022, Oracle and/or its affiliates. Available at https://docs.oracle.com/en/database/oracle/oracle-database/21/dwhsg/preface.html#GUID-9CDC42C7-5BB2-4433-9F3E-ADE92929A0EA (Accessed: 10 March 2024)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3