A Software Service for the Garbage Type Recognition Based on the Mobile Computing Devices With Graphical Data Input

Author:

Bachynskyy Ruslan, ,Chaku Oleksii,Huzynets Nataliia

Abstract

The article describes problems of determining the type and automatic sorting of household waste using mobile computing devices. All of the required hardware and partially software, required for implementation of this service, are already present in modern smartphones. iOS and Apple products were selected as the base for the service, due to such advantages over competitors: dual or triple depth camera (TDCS), powerful GPU, Neural Engine coprocessor, high autonomy (2750mAh battery size), sensors that allow for user positioning and navigation in space (GPS, Glonass, Gyroscope) and most important feature is possibility of cross-platform designing, suitable for iOS and macOS (Project Catalina). The recognition process consists of several phases, including capturing of graphic image and detecting the object shape, shape analysis, computing the results, and saving new associations to the database. The analysis itself is implemented using a neural network that is able to learn during its operation. Initially, the algorithm is driven by the selection of photographs with a certain type for the base set of associations, each subsequent scan improves accuracy. Cross-platforming plays a very important role — it allows us to develop a single software service that is initially run on a macOS-based computer for faster learning and then can be easily used on an iOS mobile device. After identifying a particular type of garbage, the route to the nearest recycling point of such type of garbage will be proposed for user or user’s clarification will be requested. User can also manually browse categories and related items, manually search by name of item, and view locations for sorting and recycling in appropriate city. When a completely unknown object arrives, it is possible to refine the information in order to help further learning of the network.

Publisher

Lviv Polytechnic National University

Reference10 articles.

1. Bachynskyy R.V. (2006). Selection of the image compression processor structure for typical algorithms Lviv Polytechnic National University Journal. - P. 3-8.

2. Morozov Y.V. (2018). Basic principles of PLO Apple Inc.

3. https://learn.ztu.edu.ua/mod/page/view.php?id=7255

4. Apple Developer Documentation (2018). Apple Inc. - https://developer.apple.com/documentation.

5. Map Kit (2018). Apple Developer Documentation Apple Inc. - Access mode: https://developer.apple.com/reference/mapkit.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3