Abstract
The processing of radio signals using artificial neural networks (ANNs) has great potential for research, which can be explained by the adaptability of ANNs to various transmission conditions and the ability to detect abstract patterns of changes in signal parameters. The article reviews the works of other authors devoted to different ways of using ANNs for processing radio signals. Taking into account the information in the reviewed works, the research task was formed, which consists in developing an optimized ANN model for radio signal processing. Signals with amplitude modulation of many components (AMMC) were chosen to form training samples for ANN. The choice of modulation type is justified by greater energy efficiency compared to other widely used digital modulation types, such as quadrature amplitude modulation. Mathematic basis of AMMC signal generation is described. The process of finding the coordinates of three component 8-AMMC signal constellation is explained, the formation of signals in the time plane based on the found coordinates is explained as well as their discretization and the addition of white noise. An iterative algorithm for generating initial data for ANN based on the described ratios is proposed. The general structure of one-dimensional convolutional neural network is considered. Functions of individual neurons, connections between them, the formation of layers and the convolution operation are described mathematically. On the basis of the previously given ratios, a final display of the network was formed. Specific dimensions and activation functions for layers are selected. The use of convolutional layers is justified by time invariance. Based on the reviewed mathematical models, selected activation functions and dimensions, a neural model was formed. The process of validating the effectiveness of the formed neural model is described, which is based on comparing the symbolic error probabilities of the proposed and reference models at different signal-to-noise ratios. The validation results are presented. The advantages of the obtained model over the previously proposed purely recurrent model and the AMMC reference receiver are explained.
Publisher
Lviv Polytechnic National University