ONE-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK MODEL FOR PROCESSING AMPLITUDE MODULATION ON MANY COMPONENTS SIGNALS

Author:

,Tsymbaliuk I.ORCID

Abstract

The processing of radio signals using artificial neural networks (ANNs) has great potential for research, which can be explained by the adaptability of ANNs to various transmission conditions and the ability to detect abstract patterns of changes in signal parameters. The article reviews the works of other authors devoted to different ways of using ANNs for processing radio signals. Taking into account the information in the reviewed works, the research task was formed, which consists in developing an optimized ANN model for radio signal processing. Signals with amplitude modulation of many components (AMMC) were chosen to form training samples for ANN. The choice of modulation type is justified by greater energy efficiency compared to other widely used digital modulation types, such as quadrature amplitude modulation. Mathematic basis of AMMC signal generation is described. The process of finding the coordinates of three component 8-AMMC signal constellation is explained, the formation of signals in the time plane based on the found coordinates is explained as well as their discretization and the addition of white noise. An iterative algorithm for generating initial data for ANN based on the described ratios is proposed. The general structure of one-dimensional convolutional neural network is considered. Functions of individual neurons, connections between them, the formation of layers and the convolution operation are described mathematically. On the basis of the previously given ratios, a final display of the network was formed. Specific dimensions and activation functions for layers are selected. The use of convolutional layers is justified by time invariance. Based on the reviewed mathematical models, selected activation functions and dimensions, a neural model was formed. The process of validating the effectiveness of the formed neural model is described, which is based on comparing the symbolic error probabilities of the proposed and reference models at different signal-to-noise ratios. The validation results are presented. The advantages of the obtained model over the previously proposed purely recurrent model and the AMMC reference receiver are explained.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3