INVESTIGATION OF DISTRIBUTED MATRIX FACTORISATION EFFICIENCY IN THE INDUSTRIAL SYSTEMS

Author:

Hordiichuk-Bublivska O.ORCID,

Abstract

The processing of big data is an exceedingly urgent challenge in the functioning of modern information systems. The latest information technologies must be employed to collect, store, and analyze vast amounts of information. Intelligent data processing systems were implemented in numerous fields, particularly in the industry. Smart industrial systems also utilize data from various devices, enabling automated management processes and network component analysis. A prime example of an intelligent industrial system is the smart grid, which efficiently distributes electricity to users by considering demand, network parameters, load, etc. Processing large amounts of information necessitates the use of machine learning methods and mathematical data analysis. Matrix factorization serves as an exemplary technique for transforming information into a more convenient form for further processing, establishing relationships between elements, and optimizing outcomes. In particular, the SVD (Singular Value Decomposition) and Funk-SVD algorithms are employed to address big data processing challenges, and they were discussed in this work. The key features of processing large data volumes in industrial smart grid systems were analyzed in the paper. The advantages of distributed computing for more efficient information analysis were identified. The recommendation algorithms that enable faster and more accurate processing of extensive data were explored in the study. Specifically, the SVD and Funk-SVD algorithms, used in recommendation systems for large data processing, were examined. A method of distributed matrix factorization to provide recommendations to smart grid system users was proposed in the paper. This approach involves the exchange of public data between devices and the local processing of private data. The advantages of this distributed model include flexibility in adjusting parameters, improved calculation accuracy through result exchange between nodes, high data processing speed, and scalability were identified. The conclusion that the proposed method can be effectively used in recommendation systems within the smart grid context, enhancing automated management processes and resource distribution was exclaimed.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3