Software analytical stochastic model of operational functional behavior of the electronic complex for detecting unmanned aerial vehicles

Author:

Volochiy B.ORCID, ,Onishchenko V.ORCID,Ozirkovskyy L.ORCID, ,

Abstract

The article considers an electronic system for detecting unmanned aerial vehicles, which includes a radar system, an optoelectronic system, a thermal imaging system, and an acoustic system. In information technology, the development of a software discrete-continuous stochastic model of the operational behavior of an electronic complex is an important stage in the creation of a structural-automatic model. The creation of a structural-automatic model is described in the article in the following sequence: description of the selected algorithm for the functioning of the electronic complex; verbal model of the operational functional behavior of the electronic complex; according to the verbal model, the development of a reference graph of states and transitions is described; on the basis of the reference graph of states and transitions, a structural-automatic model of operational behavior is formed; the need to verify the developed structural-automatic model is indicated. The combination of the structural-automatic model of operational behavior with the ASNA-2 software module forms a software stochastic model. The software stochastic model is designed to solve the problems of system engineering design (analysis and synthesis) of an electronic complex. The structural-automatic model allows the Designer to set any values of the performance indicators of the systems that are included in the electronic complex. The ASNA-2 software module automates the construction of state graphs based on the structural automated model; according to the state graph, it generates and solves the Kolmogorov-Chopman system of differential equations. By validating the software stochastic model, the reliability of the results to be obtained by the Projector was verified.

Publisher

Lviv Polytechnic National University

Reference23 articles.

1. [1] "Сounter-drone systems", 2nd Edition, Arthur Holland Michel, December 2019. Access mode: https://www.calameo.com/read/000009779458ad0134023, Date of access: 17.08.2023

2. [2] С.D. Vyshnevsky, L.V. Beilis, & V.Y. Klimchenko, "Potential capabilities of radar systems of radio engineering troops to detect operational and tactical unmanned aerial vehicles", Science and Technique of the Air Force of the Armed Forces of Ukraine, 2017, № 2, pp. 92-98. Access mode: http://nbuv.gov.ua/UJRN/Nitps_2017_2_21

3. Methods for detection-recognition of radar, acoustic, optical and infrared signals of unmanned aerial vehicles;Kartashov;Radiotekhnika 2(205) рр,2021

4. [4] "Questions to Ask When Researching Counter Unmanned Aerial Systems", U.S. Department of Homeland Security Science and Technology Directorate, 2019. Access mode: https://www.dhs.gov/sites/default/files/publications/c-uas-responder-qs-poster_20august2020_final.pdf

5. [5] A.O. Herasymenko, S.Ya. Zhuk, "Analysis of the Efficiency of the Kalman-Type Correlation Algorithm for Tracking of a Small UAV in the Presence of Uncorrelated Interference", National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (87), pp. 22 29, doi: 10.20535/RADAP.2021.87.22-29. Access mode: https://ela.kpi.ua/bitstream/123456789/56163/1/1754-4994-1-10-20211230.pdf Date of access: 17.08.2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3