Abstract
The results of the analysis of algorithmic models of machine learning application to the freight transportation process are given in this paper. Analysis of existing research allowed discovering a range of advantages in the application of computational intelligence in logistic systems, including increasing the accuracy of forecasting, reduction of transport costs, increasing the efficiency of cargo delivery, risks reduction, and search for key performance factors. In the research process, the main directions of application of algorithmic models of machine learning were determined. They are vehicle routing, choice of cargo type, transportation type and vehicle type; forecasting fuel consumption by vehicles, disruptions in transportation, transport costs, duration of the order fulfillment; evaluation of the rolling stock fleet and the efficiency of carrying out the transport task. Based on the researched publications, the most common algorithmic models of machine learning in freight transportation were identified, and their effectiveness was analyzed. Linear and logistic regression models are simple enough; however, they do not always provide high simulation results. Deep learning models are quite widely applied to all identified areas. Decision tree and random forest models often show the highest simulation performance. Models of k-nearest neighbors and support vectors should be used both in classification tasks, for example, in choosing the type of cargo and type of transportation, and for forecasting the fuel consumption and the duration of the transport process.
Publisher
Lviv Polytechnic National University
Reference40 articles.
1. 1. Mitchell, Tom. (1997). Machine Learning. New York: McGraw-Hill. (in English).
2. 2. Abdelwahab, W., & Sayed, T. (1999). Freight mode choice models using artificial neural networks. Civil Engineering And Environmental Systems, 16(4), 267-286. doi: 10.1080/02630259908970267 (in English).
3. 3. Profillidis, V., & Botzoris, G. (2019). Artificial Intelligence-Neural Network Methods. Modeling Of Transport Demand, 353-382. doi: 10.1016/b978-0-12-811513-8.00008-x (in English).
4. 4. Hryhorov, O. V., Anishchenko H. O., Stryzhak V. V., Petrenko N. O., Turchyn O. V., Okun A. O. & Ponomarov O. E. (2019). Shtuchnyi intelekt. Mashynne navchannia [Artificial Intelligence. Machine learning]. Avtomobil i elektronika. Suchasni tekhnolohii [Vehicle and Electronics. Innovative Technologies]. № 15. pp. 17-27. (in Ukrainian).
5. 5. Tsolaki, K., Vafeiadis, T., Nizamis, A., Ioannidis, D., & Tzovaras, D. (2022). Utilizing machine learning on freight transportation and logistics applications: A review. ICT Express. doi: 10.1016/j.icte.2022.02.001 (in English).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献