Method of building embeddings of signs in deep learning problems based on ontologies

Author:

Lytvyn VasylORCID, ,Mushasta SolomiyaORCID,

Abstract

This paper investigates the problem of embedding features used in datasets for training neural networks. The use of embeddings increases the performance of neural networks, and therefore is an important part of data preparation for deep learning methods. Such a process is based on semantic metrics. It is proposed to use ontologies of the subject areas to which the corresponding feature belongs for embedding. This work developed such a method and investigated its use for the task of categorizing text documents. The research results showed the advantage of the developed method.

Publisher

Lviv Polytechnic National University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference18 articles.

1. Lytvyn V. V. (2011). Knowledge bases of intelligent decision support systems: monograph. Lviv: Publishing House of Lviv Polytechnic, 240 p.

2. Vdovichenko A. V. (2002). Intelligent search systems. Classification and comparison. Artificial intelligence, IPSI "Science and education", No. 3, 61-70.

3. Strube M., Ponzetto S. (2022). WikiRelate! Computing semantic relatedness using Wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence. (AAAI 06). Boston, Mass., July 16-20, 2022. Access mode: http://www.eml-research.de/english/research/nlp/public

4. Jarmasz M., Szpakowicz S. (2020). Roget's Thesaurus and semantic similarity. In Proceedings of Conference on Recent Advances in Natural Language Processing (RANLP 2003). Borovets, Bulgaria, September, 212-219.

5. WordNet: an electronic lexical database;Fellbaum;MIT Press Cambridge Massachusetts 423 p,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3