Computer vision system for research in the area of defectoscopy for materials and products

Author:

Puyda Volodymyr,

Abstract

In many cases, visual and optical methods can be used in defectoscopy for different materials and products. With the development of microprocessor components and significant expansion of usage of computer technologies and image processing and analysis techniques in different areas, the use of visual and optical methods in defectoscopy for production and research purposes is rapidly developing. In this paper, the author proposes a computer vision system for experiments and research in the area of studying defects of materials and products. The system uses modern methods of image processing and object identification based on their images. The system allows to install the object so that it can be rotated horizontally, take high-quality images of the object using a digital video camera, pre- process images to enhance image quality using a local computing module, transfer images to the main computing module to identify defects and make decisions about rejection of the material or product. To install and rotate the material or product, the author uses the stepper motor 17HS4401 and a horizontal platform fixed on the vertical axis. The stepper motor is controlled using Microstep Driver TB6600 and a local computing module based on a microcontroller with an ARM Cortex-M7 core. The video stream is recorded using a USB microscope video camera which provides sufficiently high image resolution allowing to find defects on the object surface of size 50 micron and larger. Rotation speed can be controlled using a local computing module. The input data for the local computing module can be provided in the form of a video stream or a sequence of images. The local computing module has an LCD screen based on the ВС1602А indicator, programmable LEDs, a keyboard to select operating modes for the stepper motor, a USB port to connect the microscope video camera and an SWD port to program the Flash memory and debug the firmware in real time. Original images or the images after quality enhancement are passed to the main computing module using the SPI interface. The author has developed software for the local computing module to control the stepper motor, record a video stream or series of images of the object area with possible defects, quality enhancement and passing the video stream or images to the main computing module for further processing and analysis. The results can be used in scientific research and in development of automated systems for non-destructive defectoscopy for materials and end products.

Publisher

Lviv Polytechnic National University

Reference21 articles.

1. Nakaz 21.06.2016 № 184. URL: https://zakon.rada.gov.ua/rada/show/v0184774-16#Text (accessed: 3 October 2022).

2. Vizualno-optychnyi kontrol. [Elektronnyi resurs]. // URL: http://ua.tuev-dieks.com/ - Rezhym dostupu do resursu: http://ua.tuev-dieks.com/services/technical-diagnosis/methods-of-survey/vizualno-opticheskij-kontrol/ (accessed: 3 October 2022).

3. DSTU EN ISO 19232-4:2016. Kontrol neruinivnyi. Yakist zobrazhennia na renthenivskykh znimkakh.

4. DSTU ISO 3057:2016. Kontrol neruinivnyi. Metalohrafichnyi metodreplik dlia obstezhennia poverkhni.

5. DSTU ISO 3058:2016. Kontrol neruinivnyi. Dopomizhni zasoby dlia vizualnoho kontroliu.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3