MATHEMATICAL SPATIAL MODELS OF DETERMINATION OF TEMPERATURE FIELD FROM LOCALLY CONCENTRATED THERMAL HEATING

Author:

Havrysh V. I.ORCID,

Abstract

Linear and nonlinear mathematical models for determining the temperature field, and later the analysis of temperature regimes in isotropic spatial inhomogeneous media exposed to internal and external thermal loads have been developed. To do this, the thermal conductivity for such structures is described as a whole using symmetric unit functions, which allows us to consider boundary thermal conductivity problems with one linear and nonlinear differential equation of thermal conductivity with discontinuous coefficients and linear and nonlinear boundary conditions on boundary surfaces. In the case of a nonlinear boundary value problem, the Kirchhoff transform is applied, which linearizes the initial nonlinear equation of thermal conductivity and nonlinear boundary conditions and results in a second-order linear differential equation with partial derivatives and singular coefficients with respect to the Kirchhoff function with linear conditions. To solve the obtained linear boundary value problem, the method of integral Fourier transform was used, as a result of which an analytical solution was obtained, which determines the Kirchhoff linearizing function. As an example, the linear and cubic dependences of the thermal conductivity of structural materials on the structure, which are often used in many practical problems, are chosen. As a result, analytical relations in the form of quadratic and biquadratic equations are obtained to determine the temperature distribution in the thermosensitive layer with foreign inclusion at external local heating. Numerical analysis of temperature behavior as a function of spatial coordinates for given values of geometric and thermophysical parameters is performed. The influence of foreign inclusion on the temperature distribution was studied if the material of the medium was selected ceramics VK94-I, and the inclusion – silver, aluminum and silicon. To determine the numerical values of temperature in these structures, as well as the analysis of heat transfer processes in the middle of these structures due to internal and external heat loads, developed software that uses a geometric representation of temperature distribution depending on spatial coordinates. The obtained numerical values of temperature testify to the correspondence of the developed mathematical models of the analysis of heat exchange processes in spatial inhomogeneous media with internal and external heating to the real physical process. Software also allows you to analyze this type of environment, which are exposed to internal and external heat loads, in terms of their heat resistance. As a result, it becomes possible to increase it and protect it from overheating, which can lead to the destruction of not only individual elements but also the entire structure.

Publisher

Lviv Polytechnic National University

Reference18 articles.

1. [1]     Aza­ren­kov, V. I. (2012). Issle­do­va­nie i raz­ra­bot­ka tep­lo­voi mo­de­li i me­to­dov ana­li­za tem­pe­ra­tur­nikh po­lei konstruktcii ra­dioelektron­noi ap­pa­ra­tu­ri. Techno­logy au­dit and pro­duc­ti­on re­ser­ves, 3/1(5), 39-40. [In Rus­si­an].

2. [2]     Car­pin­te­ri, A., & Pag­gi, M. (2008). Ther­mo­elas­tic mis­match in non­ho­mo­ge­ne­ous be­ams. Jo­ur­nal of En­gi­ne­ering Mat­he­ma­tics, 61(2-4), 371-384. https://doi.org/10.1007/s10665-008-9212-8

3. [3]     Dovbnia, K. M., & Dun­dar, O. D. (2016). Stat­si­onarnyi tep­lo­ob­min tonkykh po­lohykh izot­ropnykh obo­lo­nok, ya­ki znak­ho­di­at­sia pid diieiu dzhe­rel tep­la, zo­se­redzhenykh po dvovymir­nii ob­las­ti. Visnyk Don­NU. Ser. A: Pryrodnychi na­uky, 1-2, 107-112. [In Uk­ra­ini­an].

4. [4]     Havrysh, V. I., & Fe­das­juk, D. V. (2012). Mo­del­ling of tem­pe­ra­tu­re re­gi­mes in pi­ece­wi­se-ho­mo­ge­ne­ous struc­tu­res. Lviv: Pub­lis­hing hou­se of Lviv Po­li­technic Na­ti­onal Uni­ver­sity, 176 p.

5. [5]     Havrysh, V. I., Ba­ra­netskiy, Ya. O., & Kol­ya­sa, L. I. (2018). In­ves­ti­ga­ti­on of tem­pe­ra­tu­re mo­des in ther­mo­sen­si­ti­ve non-uni­form ele­ments of ra­dioelectro­nic de­vi­ces. Ra­dio electro­nics, com­pu­ter sci­en­ce, ma­na­ge­ment, 3(46), 7-15. https://doi.org/10.15588/1607-3274-2018-3-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3