DEVELOPMENT OF THE ACCELERATION MEASURING METHOD

Author:

Teslyuk V. M.ORCID, ,Zaharyuk R. V.,Ivantsiv R. D.,Seneta M. Ya.ORCID,Tkachuk K. I.,Koval A. V., , , , ,

Abstract

The existing acceleration measuring methods are analyzed in the article. An overview of modern research on this topic is also provided. A new method of measuring acceleration in the form of an electrical circuit using a stable frequency generator is developed. Among the already known methods, the following three groups are highlighted in the analysis: methods based on compensatory accelerometers with discrete output; methods based on accelerometers with the analog-to-digital converter; measurement techniques, which use mounted elements. The main difference between the proposed method and the existing ones is the use of circuits of two resonant circles with built-in capacitance sensors, developed according to microelectromechanical system technologies. The principle of operation of the acceleration measuring device is described in the article, and its structural diagrams are provided. The peculiarities of the functioning of its components are analyzed. The main advantages of using the proposed method are highlighted. It is described the technical difference of this method from those already implemented ones, which also lies in the presence of an additional transformer. Based on the proposed method of measuring acceleration in the form of an electrical circuit, the operating frequency characteristics of the device are investigated. The stages of conversion of accelerometer signals are described in the article as well as the forms of input and output signals. The use of two resonant circles within built capacity sensors and the stable frequencies generator in the scheme of acceleration measuring device allows for measurement of the frequency characteristics changes in resonant circuits with minimum capacity changes in sensors. The resulting frequency value is linear in the range of the accelerometer frequency due to the frequency characteristics of the first and second resonance circles, which are reversed and symmetrical about the horizontal axis. A feature of the developed new measurement method is the possibility of using this scheme at very low input voltages. Due to the proposed method, it is possible to increase the accuracy of acceleration measurement and expand the working capabilities of the device. In its turn, it allows applying this device in vibration and position variation conditions.

Publisher

Lviv Polytechnic National University

Subject

General Medicine

Reference23 articles.

1. [1] Korvink, Jan, & Paul, Oliver (2006). MEMS: A practical guide of design, analysis, and applications. Springer, 965. https://doi.org/10.1007/978-3-540-33655-6

2. [2] Teslyuk, V., Pereyma, M., Denysyuk, P., & Chimich, I. (2006). Computer-aided system for MEMS design "ProMIP". Proc. of the 2nd Inter. Conf. of Young Scientists "Perspective Technologies and Methods in MEMS Design" (MEMSTECH), 49-52. https://doi.org/10.1109/MEMSTECH.2006.288661

3. [3] Petersen, K. (2005). A new age for MEMS. Solid - state sensors, actuators and microsystems (TRANSDUCER'05): Proc. of the 13-th Intern. Conf. Digest of Technical Papers, 1, 1-4.

4. [4] Keller, J. (2006). DARPA approaches industry for ideas for unmanned underwater surveillance technology. Military & Aerospace Electronics. Retrieved from: https://www.militaryaerospace.com/communications/article/16708779/darpa-approaches-industry-for-ideas-for-unmanned-underwater-surveillance-technology

5. [5] Saha, I., Islam, R., Kanakaraju, K., et al. (1999). Silicon micromachined accelerometers for space inertial systems. SPIE: Proc. of the Intern. Conf. Bellingham, 3903, 162-170. https://doi.org/10.1117/12.369456

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3