Information technology for the analysis of mobile operator sales outlets based on clustering methods

Author:

,Narushynska O. O.,Motrunych V. I., ,Arzubov M. V.ORCID, ,Teslyuk V. M.ORCID,

Abstract

This research presents the development and implementation of information technology for monitoring and analyzing segments of a mobile operator's stores using clustering methods. The study addresses a pertinent issue in marketing and business optimization, namely the enhancement of strategies for the network of mobile communication stores. The research paper presents a novel approach to segmenting mobile operator stores using clustering algorithms. A software product was developed that includes machine learning algorithms for clustering stores according to critical parameters. A comprehensive analysis of the mobile operator's database was conducted to identify critical characteristics of the stores, such as profitability, patterns of mobile operator service usage, the number of new and lost customers, geographical location, and other vital indicators. Particular attention was paid to developing tools for preparing and processing input data, ensuring the accuracy of subsequent clustering. With the created product, the mobile operator can identify the most profitable stores, uncover growth opportunities, and develop targeted strategies for each segment. By applying the developed technology, the mobile operator gains the ability not only to identify crucial and profitable sales points but also to develop focused strategies for different groups of stores, taking into account their unique characteristics. This approach strengthens the company's market position, increasing customer satisfaction and profitability. Additionally, when examining the possibilities of analyzing store dynamics over time, it is necessary to consider the ever-evolving business environment. Such a tool can assist the operator in swiftly adapting strategies and responding to new trends and challenges while preserving stability and profitability. Similar innovative approaches not only facilitate the management of a mobile operator's store network but also enable the establishment of more open and flexible customer relationships. By providing personalized services and responding to their needs, businesses can enhance customer loyalty and increase their profits. In conclusion, this research endeavour carries significant practical implications for the realms of marketing and mobile operator development. Its findings can be harnessed to enhance the efficiency of operations and profitability within this industry.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3