APPLICATION OF LINEAR REGRESSION METHOD FOR ANALYSIS OF CYTOLOGICAL IMAGES QUANTITATIVE CHARACTERISTICS

Author:

Berezsky O. M. Berezsky O. M.ORCID, ,Pitsun O. Yo. Pitsun O. Yo.ORCID,Melnyk G. M. Melnyk G. M.ORCID,Datsko T. V.ORCID, , , ,

Abstract

This ar­ticle analyzes the pat­ho­lo­gi­cal con­di­ti­ons of the bre­ast ba­sed on the study of cyto­lo­gi­cal ima­ges. Cyto­lo­gi­cal ima­ges are a se­pa­ra­te class of bi­ome­di­cal ima­ges and are used in the di­ag­no­sis of can­cer. For di­ag­no­se pre­can­ce­ro­us and can­ce­ro­us con­di­ti­ons and tre­at­ment tac­tics, di­ag­nosti­ci­ans use cyto­lo­gi­cal, his­to­lo­gi­cal, and im­mu­no­his­toche­mi­cal ima­ges. For au­to­ma­ting the pro­cess of di­ag­no­sis in on­co­logy, au­to­ma­ted mic­roscopy systems are used. Au­to­ma­ted mic­roscopy systems use com­pu­ter vi­si­on al­go­rithms. Re­cently, mac­hi­ne le­ar­ning al­go­rithms ha­ve be­en used to clas­sify ima­ges. Mic­rosco­pic ima­ge pro­ces­sing is a complex and ti­me-con­su­ming pro­cess, as the ima­ges are cha­rac­te­ri­zed by high no­ise le­vels and the ab­sence of cle­ar con­to­urs of cell nuc­lei. To cal­cu­la­te the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of cell nuc­lei cyto­lo­gi­cal ima­ges, the met­hod for cal­cu­la­ting the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of cell nuc­lei ba­sed on ima­ge fil­te­ring al­go­rithms and the­ir au­to­ma­tic seg­menta­ti­on has be­en de­ve­lo­ped. An U-Net con­vo­lu­ti­onal neu­ral net­work archi­tec­tu­re has be­en de­ve­lo­ped for cell nuc­le­us seg­menta­ti­on. In this work, the met­hod of pro­ces­sing cyto­lo­gi­cal ima­ges is de­ve­lo­ped. The met­hod con­sists of six sta­ges. The first step is to lo­ad the ima­ge in­to the com­pu­ters me­mory. In the se­cond sta­ge, the ima­ges are prep­ro­ces­sed. The third sta­ge is the au­to­ma­tic seg­menta­ti­on of ima­ges ba­sed on the con­vo­lu­ti­onal neu­ral net­work of the U-Net type. In the fo­urth sta­ge, the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of cell nuc­lei are cal­cu­la­ted. In the fifth sta­ge, the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of the cell nuc­lei are sto­red in a da­ta­ba­se. In the sixth sta­ge, li­ne­ar reg­ressi­on al­go­rithms are used to ob­ta­in qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of cell nuc­lei. Cur­rently, li­ne­ar reg­ressi­on is one of the com­mon appro­ac­hes of mac­hi­ne le­ar­ning to da­ta analysis. In this work, the com­pa­ra­ti­ve analysis of the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics appli­ca­ti­on in cell nuc­lei is car­ri­ed out ba­sed on li­ne­ar reg­ressi­on. The sci­en­ti­fic no­velty of the work is de­ve­lop­ment the met­hod for cal­cu­la­ting the qu­an­ti­ta­ti­ve cha­rac­te­ris­tics of cell nuc­lei, which inclu­des sta­ges of ima­ge fil­te­ring and au­to­ma­tic seg­menta­ti­on ba­sed on the use of a neu­ral net­work such as U-Net. The prac­ti­cal sig­ni­fi­can­ce of the work is the softwa­re imple­men­ta­ti­on of the prep­ro­ces­sing mo­du­les and li­ne­ar reg­ressi­on. In par­ti­cu­lar, in­vesti­ga­ted that the set of pa­ra­me­ters "area, length of the ma­in axis" has 1.4 ti­mes less RMSE er­ror com­pa­red to the set "area, pe­ri­me­ter".

Publisher

Lviv Polytechnic National University

Reference13 articles.

1. [1] Abdulqader, Q. (2017). Applying the Binary Logistic Regression Analysis on The Medical Data. Science Journal of University of Zakho, 5(4), 330-334. https://doi.org/10.25271/2017.5.4.388

2. [2] Altman, N. & Krzywinski, M. (2015). Simple linear regression. Nat Methods, 12, 999-1000. https://doi.org/10.1038/nmeth.3627

3. [3] Berezsky, O. M. (Ed.) (2017). Methods, algorithms and software for processing biomedical images. Ternopil: Ekonomichna dumka, TNEU, 330. [In Ukrainian].

4. [4] Berezsky, O. M., Melnyk, G. M. & Berezka, K. M. (2013). Fuzzy knowledge base of the intelligent system for diagnosing breast cancer. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 6, 284-291. [In Ukrainian].

5. [5] Berezsky, O. M., Melnyk, G. M., Batko, Y. M., & Datsko, T. V. (2013). Intelligent system for diagnosing various forms of breast cancer based on the analysis of histological and cytological images. Scientific Bulletin of UNFU, 23(13), 357-367. [In Ukrainian].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3