Modeling of electrical conductivity of graphene-based polymer nanocomposites: calculation from the first principles

Author:

Tovstyuk Сornelija,

Abstract

The use of nanocomposite materials has led to progress in the creation of new electronic devices (minitransistors, sensors, micro-drives, which are used to build artificial muscles, and supercapacitors. Nanocomposites occupy a special place with magnetosensitive fillers, particularly successfully used in medicine. Nanocomposites are also used for a protective coating. Depending on the operational functions, achieving a specific conductivity value and its change with temperature is necessary for such a coating. In the work, a conductivity model of polymer nanocomposites based on graphene (Gr/PS) was obtained using experimental data. The largest relative deviation between the conductivity surface and experimental data does not exceed 9.5%. The expression was obtained for the graphene concentration 1 < C(Gr) < 30 wt % and the temperature range 20 < T < 100 °C. The dependence of the specific electrical conductivity on the filler concentration and temperature obtained in the work will allow the researchers to select a nanocomposite with the required conductivity and evaluate the temperature effects on it for the conditions to which the material will be exposed.

Publisher

Lviv Polytechnic National University

Subject

General Medicine

Reference13 articles.

1. E. Kovalchuk, M. Zatsushyn, and N. Dumanchuk, "Chemical Synthesis of the Nanostructured Polyaniline and its applications", in Proc. Shevchenko Sci. Soc. Chem. Biochem, vol. 21, pp.108 - 122, 2008.

2. B. Kim, D. Park, J.Joo, S. Yu, and S. Lee, "Synthesis characteristics and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylene-dioxythiophene) nanotubes and nanowires", Synth. Met, vol. 150, pp. 279 - 284, 2005.

3. A.Ambrosi, A.Morrin, M. Smyth, and A. Killard, "The Application and conducting polymer nanoparticle electrodes to the sensing of ascorbic acid", Anal. Chem. Acta, vol. 75, no. 21, pp. 5673 - 5679, 2008.

4. R. Baughman, "Playing nature's game with artificial muscles", Science, vol. 308, pp. 63 - 65, 2005.

5. P. Sivaraman, V. Hande, V.Mishra, Ch.S. Rao, and A. Samui, "All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone)", J. Power Sources, vol. 124, pp. 351 - 354, 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3