The implementation of the method of reduced matrix D-trees in the Udf MAOPCs environment

Author:

,Romaniuk RomanORCID

Abstract

The article explores the content of the MatrixDtrees function, which extends the functionality of the UDF MAOPCs and is designed to generate symbolic transfer functions of linear parametric circuits. This function represents a software implementation of the Transformed Matrix D-trees method. This method is an extension of the symbolic d-trees method, developed for constant parameters circuits, to parametric circuits. The extension involves the transition from algebraic operations with numbers and symbols in the d-trees method to matrix algebraic operations, taking into account the non-commutativity of matrix multiplication. The Transformed Matrix D-trees method significantly reduces computational time for modeling parametric circuits by factoring out similarities in complex symbolic expressions generated during the analysis process. The MatrixDtrees function allows for the steady-state analysis in highly complex parametric circuits. By such circuits, we mean circuits that contain dozens or hundreds of nodes and elements (including parametric ones). The article includes the results of analyzing a parametric long line model, which is represented by a combination of lumped parameters and consists of many cascaded elementary sections. Each of these sections is a combination of parametric inductance and constant capacitance. The paper presents the results of an experiment to determine the output voltage of a long line model containing 1025 nodes, 1024 constant capacitances, and 1024 parametric inductances. The results are comparable to calculations of the same long line model using the MicroCap program. The relative deviation between the calculation results for both programs was less than 1%. The calculation time for the Transformed Matrix D-trees method using the MatrixDtrees function was 18 minutes, whereas for the MicroCap program, it was 36 hours.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3