Abstract
The work is devoted to the current problem of finding new ways and mechanisms of high-density electric energy accumulation. As a result of the conducted researches the system which allows to accumulate an electric charge at the expense of quantum effects and the phenomena without use of chemical reactions is offered. The basic idea was to form a material with a colossal area of the inner active surface with a sharply anisotropic chemical bonding character. Accordingly, the main goal was to create and study electrode materials based on intercalant heterophase structures with different types of hierarchy, capable of storing electrical energy at the quantum level. Based on the results of impedance spectroscopy, it was found that the obtained clathrate structures are promising for use as a cavitand electrode in a quantum battery, and, most importantly, can significantly increase its capacity
Publisher
Lviv Polytechnic National University
Reference16 articles.
1. 1. Application PCT BY 99/00012 "Quantum-Size Electronic Devices and Operating Conditions Thereof" (International Publication Number: WO 00/41247, 13.07.2000).
2. 2. S. Krohns, P. Lunkenheimer, Ch. Kant, A. V. Pronin, H. B. Brom, A. A. Nugroho, M. Diantoro, and A. Loidl, Colossal dielectric constant up to gigahertz at room temperature, Appl. Phys. Lett, vol. 94, pp. 122903-1 - 122903-3- 2009. DOI: http://dx.doi.org/10.1063/1.3105993;
3. 3. Alfred W. Hübler and Onyeama Osuagwu, "Digital quantum batteries: Energy and information storage in nanovacuum tube arrays", Wiley Periodicals Inc. Complexity, vol. 15, no. 5, pp. 48-55, 2010. (DOI: 10.1002/cplx.20306);
4. 4. Application PCT BY 99/00012 "Quantum-Size Electronic Devices and Operating Conditions Thereof" (International Publication Number: WO 00/41247, 13.07.2000);
5. 5. Piotr Chabecki, Dariusz Całus, Fedir Ivashchyshyn, Anna Pidluzhna, Orest Hryhorchak, Ihor Bordun, Oleksandr Makarchuk, and Andriy Kityk, "Functional Energy Accumulation, Photo- and Magnetosensitive Hybridity in the GaSe-Based Hierarchical Structures", Energies, vol. 13, Issue 17, pp. 4321(1-16), 2020. https://doi.org/10.3390/en13174321;