The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke

Author:

,Miroshnichenko Denis,Borisenko Oleksandr, ,Koval Valentine, ,Zelenskii Oleh, ,Soloviov Yevhen, ,Pyshyev Serhiy,

Abstract

This study aimed to evaluate the effect of both inorganic (boron carbide nanopowders and silicon carbide (carborundum) and organic lean (petroleum coke) additives on the quality of coke produced in a laboratory furnace, as well as on its electrical properties. Analyzing the results of the quality assessment of the obtained coke, it can be argued that the addition of a fixed amount (0.25-0.5 wt.%) of non-caking nanoadditives allows to regulate the process in the plastic state in order to increase the coke strength. This modification affects the coke quality and has a significant dependence on the grade composition of the coal charge. The use of nanoadditives is especially important for coal charges with poor coking properties. Adding 5% of petroleum coke to the coal charge leads to an increase in the gross coke yield by 1.2-1.3%; a decrease in coke ash content by 0.2-0.3%; an increase in the total sulfur content in coke by 0.15-0.23%; deterioration in both mechanical (P25 − by 0. 1-0.6%; I10 − by 0.1-0.2%) and coke strength after the reaction (CSR - by 0.6-1.0%), coke reactivity (CRI - by 0.2-0.3%), as well as structural strength (SS by 0.3-0.4%), abrasive hardness (AH by 0.7-1.0 mg) and specific electrical resistance (ρ by 0.002-0.007 Om×cm). The obtained data may indicate an increase in the order degree of the coke structure and the appearance of a larger number of nanostructures. In addition, it should be noted that a sharper deterioration in blast furnace coke quality is observed when using a coal charge characterized by a lower coal content of the Concentrating Factory Svyato-Varvarynska LLC.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3