REFINING EXPERT BASED EVALUATION ON THE BASIS OF A LIMITED QUANTITY OF DATA

Author:

Hrytsiuk Yu. I.ORCID, ,Ferneza O. R.,

Abstract

A techniq­ue has be­en de­ve­lo­ped to re­fi­ne ex­pert ba­sed eval­ua­ti­on of the pro­ba­bi­lity distri­bu­ti­on pa­ra­me­ter of a ran­dom va­ri­ab­le ba­sed on a li­mi­ted amo­unt of sta­tis­ti­cal da­ta. This ma­de it pos­sib­le to iden­tify the most in­for­ma­ti­ve da­ta transmis­si­on chan­nel (the most qua­li­fi­ed ex­pert) and get its re­li­ab­le as­sessment. It has be­en es­tab­lis­hed that the analysis and pro­ces­sing of a li­mi­ted amo­unt of da­ta is car­ri­ed out using well-known techniq­ues in pro­ba­bi­lity the­ory and mat­he­ma­ti­cal sta­tis­tics, whe­re sig­ni­fi­cant the­ore­ti­cal and prac­ti­cal ex­pe­ri­en­ce has be­en ac­cu­mu­la­ted. A mat­he­ma­ti­cal mo­del that descri­bes the sta­te of an ob­ject, pro­cess, or phe­no­me­non is pre­sen­ted as a po­int es­ti­ma­te of the pro­ba­bi­lity distri­bu­ti­on pa­ra­me­ter of a ran­dom va­ri­ab­le, the val­ue of which is ob­ta­ined on the ba­sis of a small sample of da­ta. The mo­dern appro­ac­hes to the sta­tis­ti­cal es­ti­ma­ti­on of a ran­dom va­ri­ab­le are analyzed, the most com­mon of which is the Ba­ye­si­an appro­ach. It is es­tab­lis­hed that the most sig­ni­fi­cant mo­ment of the Ba­ye­si­an es­ti­ma­ti­on of the unknown pa­ra­me­ter of the pro­ba­bi­lity distri­bu­ti­on of a ran­dom va­ri­ab­le is the ap­po­intment of a cer­ta­in functi­on of the a pri­ori den­sity of its distri­bu­ti­on. This functi­on sho­uld cor­res­pond to the ava­ilab­le pre­li­mi­nary in­for­ma­ti­on on the sha­pe of the a pri­ori pro­ba­bi­lity distri­bu­ti­on of this qu­an­tity. The tra­di­ti­onal appro­ach to iden­tif­ying the most in­for­ma­ti­ve chan­nel for transmit­ting da­ta on the sta­te of an ob­ject, the co­ur­se of a pro­cess or phe­no­me­non, and cut­ting off ot­hers is less re­li­ab­le. This is car­ri­ed out using the so-cal­led mec­ha­nism of re­du­cers of deg­re­es of fre­edom. Its ma­in di­sad­van­ta­ge is that in the cut-off da­ta transmis­si­on chan­nels, the­re may be so­me use­ful in­for­ma­ti­on that is not in­vol­ved in the de­ve­lop­ment of an ag­re­ed so­lu­ti­on. The­re­fo­re, it is ne­ces­sary to intro­du­ce mec­ha­nisms of discri­mi­na­tors of deg­re­es of fre­edom. They al­low all da­ta transmis­si­on chan­nels to par­ti­ci­pa­te in the de­ci­si­on-ma­king pro­cess in terms of im­por­tan­ce, which cor­res­ponds to the gre­atest deg­ree of the­ir in­for­ma­ti­on con­tent in the cur­rent sit­ua­ti­on. An il­lustra­ti­ve example of the appli­ca­ti­on of the con­si­de­red met­hods of ave­ra­ging da­ta is shown, which ref­lects the re­sults of cal­cu­la­ti­ons by ite­ra­ti­ons using the imple­men­ta­ti­on mec­ha­nisms of both re­du­cers and discri­mi­na­tors of deg­re­es of fre­edom. The­se mec­ha­nisms ref­lect the fe­atu­res of the imple­men­ta­ti­on of ite­ra­ti­ve al­go­rithms that are cha­rac­te­ris­tic of both met­hods of mat­he­ma­ti­cal sta­tis­tics and met­hods of a syner­ge­tic system of ave­ra­ging da­ta.

Publisher

Lviv Polytechnic National University

Reference36 articles.

1. [1] Aizer­man, M. A., Bra­ver­man, E. M., & Ro­zo­no­er, L. I. (1970). The met­hod of po­ten­ti­al functi­ons in mac­hi­ne le­ar­ning the­ory. Mos­cow: Sci­en­ce. 384 p. [In Rus­si­an].

2. [2] Bakhrus­hin, V. E. (2006). Da­ta Analysis: a tu­to­ri­al. Za­po­rizhzhia: PG "Hu­ma­ni­ti­es", 128 p. [In Uk­ra­ini­an].

3. [3] Bakhrus­hin, V. E., & Ig­na­hi­na, M. A. (2008). Appli­ca­ti­on of sta­tis­ti­cal met­hods in pro­ces­sing the re­sults of pro­duc­ti­on control in me­tal­lurgy of se­mi­con­duc­tors. System Techno­logy, 3(56), Vol. 1, 3-7. [In Rus­si­an].

4. [4] Bot­su­la, M., & Mor­gun, I. (2008). The prob­lem of qua­lity exa­mi­na­ti­on of dis­tan­ce co­ur­ses. Sci­en­ti­fi­cal Jo­ur­nals of Vinnytsia Na­ti­onal Techni­cal Uni­ver­sity, 4, 1-7. Ret­ri­eved from: http://nbuv.gov.ua/e-iour­nals/vntu/2008-4/2008-4.fi­les/uk/08mpbcme.uk.pdf. [In Uk­ra­ini­an].

5. [5] Brandt, Z. (2003). Da­ta analysis: Sta­tis­ti­cal and Com­pu­ta­ti­onal Met­hods for Sci­en­tists and En­gi­ne­ers. Mos­cow: Mir, AST, 686 p. [In Rus­si­an].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3