Investigation of Changes in Natural Gas Parameters along a Damaged Gas Pipeline

Author:

Dzhyhyrei Victor, ,Matiko Fedir

Abstract

The paper presents a mathematical model of the stationary flow of natural gas in an inclined gas pipeline, which makes it possible to calculate the gas parameters (pressure, temperature, compressibility factor) in every cross-section of gas pipeline. An improved mathematical model is also proposed by the authors, which considers the change in the gas flowrate along the gas pipeline. Complex 1 characterizing the effect of frictional forces and pressure losses and Complex 2 determining the effect of flow velocity were proposed to confirm the need to use an improved mathematical model. Based on the ratio of these complexes, a quantitative criterion was formed for the application of the improved mathematical model. An example of a comparison of complexes for a long pipeline and a short pipeline with a large gas flowrate is presented. Provided that the complexes are of the same order, the relative deviation of the pressures at the end of the gas pipeline obtained by the known and improved model can differ by 8 – 10%. Therefore, in such a case, it is necessary to apply the mathematical model improved by the authors. An example of the application of mathematical models is presented for the analysis of gas pressure and temperature distribution along a gas pipeline with significant damage. The pressure profile along this gas pipeline was obtained for its operating mode with gas flowrate limitation at the inlet and without limitation. It is shown that when the area of damage increases, the change in the pressure profile for these operating modes has features that can be used during the development of a system for determining the volume of gas lost because of sudden damage to gas pipelines.

Publisher

Lviv Polytechnic National University

Reference17 articles.

1. 1. Non-CO2 Greenhouse Gas Emission Projections & Mitigation. United States Environmental Protection Agency. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases. (accessed on April 14, 2024)

2. 2. Shapoval, S., Mysak, S., Shapoval, P., Matiko, H.: Analysis of Current Use of Renewable and Alternative Energy Sources by European Countries. Lecture Notes in Civil Engineering (438), 381-391 (2024).

3. Determination of Gas Pressure Distribution in a Pipeline Network using the Broyden Method;Adji Sidarto;Journal of Engineering and Technological Sciences •,2017

4. 4. L.V. Lesovoy, L.V. Blyzniak: Determination of natural gas pressure at the points of its removals in a gas pipeline with branches. Quality control methods and devices № 12, 88-91 (2004)

5. Investigation of the gas losses in transmission networks;Stoica;Journal of Petroleum Exploration and Production Technology,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3