Author:
Settar A., ,Fatmi N. I.,Badaoui M., ,
Abstract
To guarantee the non-negativity of the conditional variance of the GARCH process, it is sufficient to assume the non-negativity of its parameters. This condition was empirically violated besides rendering the GARCH model more restrictive. It was subsequently relaxed for some GARCH orders by necessary and sufficient constraints. In this paper, we generalized an approach for the QML estimation of the GARCH(p,q) parameters for all orders $p\geq 1$ and $q\geq1$ using a constrained Kalman filter. Such an approach allows a relaxed QML estimation of the GARCH without the need to identify and/or apply the relaxed constraints to the parameters. The performance of our method is demonstrated through Monte Carlo simulations and empirical applications to real data.
Publisher
Lviv Polytechnic National University
Subject
Computational Theory and Mathematics,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献