Author:
Benboubker M. B., ,Traore U.,
Abstract
In this paper we prove the existence of an entropy solution to nonlinear parabolic equations with diffuse Radon measure data which does not charge the sets of zero p(⋅)-capacity and nonhomogeneous Neumann boundary condition. By a time discretization technique we analyze existence, the uniqueness and the stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.
Publisher
Lviv Polytechnic National University
Subject
Computational Theory and Mathematics,Computational Mathematics
Reference32 articles.
1. Benboubker M. B., Ouaro S., Traoré U. Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator and measure data. J. Nonlinear Evol. Eqns. Appl. 5, 53-76 (2015).
2. Existence result for nonlinear parabolic problems with L1-data;El Hachimi;Applicationes Mathematicae,2010
3. Benzekri F., El Hachimi A. Doubly nonlinear parabolic equations related to the p-Laplacian operator: Semi-discretization. Electronic Journal of Differential Equations. 2003 (113), 1-14 (2003).
4. Eden E., Michaux B., Rakotoson J. M. Semi-discretized nonlinear evolution equations as dynamical systems and error analysis. Indiana University Mathematics Journal. 39 (3), 737-783 (1990).
5. Růžička M. Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics. Vol. 1748. Springer-Verlag, Berlin, Heidelberg (2000).