GEODYNAMICS

Author:

Savchyn Ihor,

Abstract

The main goal is to determine and analyze the recent rotation poles of the main tectonic plates based on measurements of continuous GNSS stations for the period of 2002–2021. Using procedures based on the method of the least squares, we suggested an algorithm to determine recent rotation poles of tectonic plates on the basis of processing time series of daily solutions of continuous GNSS stations. The algorythm was implemented in the MathCAD software package. It uses, generalizes, and modernizes the approaches presented in previous studies. Structurally, this algorithm consists of five consecutive stages: transformation of data into an internal format; compliance check and time series filtering; determination of horizontal displacement rates; compliance check and filtering of specified velocities; determination of rotation poles. The algorithm involves the use of freely available time series of daily solutions of continuous GNSS stations, or any other data prepared in a similar format. The study has developed an algorithm to determine recent rotation poles of tectonic plates. It is based on processing time series of daily solutions of continuous GNSS stations. The algorithm was tested to define the recent rotation poles of the main tectonic plates. We determined the components of recent horizontal displacement vectors of 3169 continuous GNSS stations located on 7 large, 7 medium and 3 micro plates for the period of 2002-2021 in the ITRF2014/IGS14 reference frame. The accuracy of determining the component vectors of horizontal displacements is in the range of 0.9-6.4 mm and is on average 10–15% of the vector length. The research allowed us to construct a map scheme of the spatial distribution of the velocity field of recent horizontal movements of continuous GNSS stations. Recent rotation poles of the main tectonic plates were determined for the period 2002-2021 in ITRF2014/IGS14 reference frame. It was established that, in general, the obtained values of recent rotation poles correlate well with known models of tectonic plate movements. This confirms the correctness of the chosen method, as well as the reliability of the obtained results. Recent rotation poles of tectonic plates are the basis for modeling and analysis of global, regional and local geodynamic processes, so their accurate determination is an urgent and necessary task. GNSS data is an alternative, and recently, practically irreplaceable basis for determining such parameters. The rapid increase in the number of continuous GNSS stations, as well as the high quality of their measurements, contributes to improving the accuracy of determining the recent rotation poles of tectonic plates, but leads to the need for their constant recalculation and refinement. The presented algorithm and the obtained results can be used to develop new and refine existing models of tectonic plate movements and reference frames, as well as to forecast the movements of the Earth’s crust.

Publisher

Lviv Polytechnic National University

Subject

Industrial and Manufacturing Engineering,Surfaces, Coatings and Films

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3