GEODESY, CARTOGRAPHY, AND AERIAL PHOTOGRAPHY

Author:

Palianytsia Bohdan, ,Kladochnyi Bohdan,Palianytsia Oksana, ,

Abstract

The purpose of this work is to build 3D models of components of zenith tropospheric delay (ZTD) according to the surface measurements of meteorological values obtained at 100 points, which is almost evenly distributed throughout Ukraine. Method. Saastamoinen formulas calculated dry and wet components of the zenith tropospheric delay. According to the obtained results, the fields of dry and wet components of tropospheric delay were compiled, the fields of their change were constructed using a different number of studied points. Also, with the help of a graphic editor, 3D models of the magnitude one-moment distribution of dry and wet components of the zenith tropospheric delay for the territory of Ukraine were built. Results. Built 3D models of ZTD components; constructed zenith tropospheric delay fields for the territory of Ukraine; a comparison of the distribution of delay components for the specified area and its change during the day are the results of this work. It is established that the dry component becomes more important in the southern and central territory of Ukraine, where the observation points are lower in height and where there is a higher atmospheric pressure, which dominates in the calculation of this component. Accordingly, the wet component is also higher in the southern part of Ukraine, but this is due to higher relative humidity. As a result of the compaction of the network to 100 points, more accurate models of component distribution were obtained, which allowed Ukraine to assess in more detail the value of tropospheric delay for the territory of Ukraine. Further compaction of the network for the territory of Ukraine did not lead to the expected increase in the accuracy of tropospheric delay, as the location of meteorological stations in the country is not uniform enough, and some values of meteorological magnitudes are obtained not by direct measurements but by interpolation. It is necessary to compact the model with reliable meteorological measurements evenly and to control the calculation of components by integrating according to the aerological soundings carried out at individual points to obtain a more detailed model. Scientific novelty and practical significance. The scientific novelty is to build 3D models of tropospheric delay components for the territory of Ukraine at a certain point in time. The practical significance of the performed research is that they can be used as an initial step to build a Spatio-temporal model of tropospheric delay, reflecting the spatial changes of the delay in real-time for a particular area.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3