GEODESY, CARTOGRAPHY AND AERIAL PHOTOGRAPHY

Author:

Dvulit Petro, ,Savchuk Stepan,Sosonka Iryna, ,

Abstract

The aim of the research is to diagnose the metrological characteristics of high-precision GNSS-observations by methods of non-classical error theory of measurements (NETM) based on Ukrainian reference stations. Methodology. We selected 72 GNSS reference stations, downloaded daily observation files from the LPI analysis center server, and created time series in the topocentric coordinate system. The duration of the time series is almost two years (March 24, 2019 - January 2, 2021). Using a specialized software package, the time series have been cleaned of offsets and breaks, seasonal effects, and the trend component has been removed. Verification of empirical distributions of errors was provided by the procedure of NETM on the recommendations offered by G. Jeffries and on the principles of hypothesis tests the theory according to Pearson's criterion. The main result of the research. It is established that the obtained time series of coordinates of reference GNSS stations do not confirm the hypothesis of their conformity to the normal Gaussian distribution law. NETM diagnostics of the accuracy of high-precision GNSS measurements, which is based on the use of confidence intervals for assessing the asymmetry and kurtosis of a significant sample, followed by the Pearson test, confirms the presence of weak, not removed from GNSS-processing, sources of systematic errors. Scientific novelty. The authors use the possibility of NETM to improve the processing of high-precision GNSS measurements and the need to take into account the sources of systematic errors. Failure to take into account certain factors creates the effect of shifting the time coordinate series, which, in turn, leads to subjective estimates of station velocity, i.e. their geodynamic interpretation. Practical significance. Research of the reasons for deviations of errors distribution from the established norms provides metrological literacy of carrying out high-precision GNSS measurements of large samples.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3