Machine learning for the analysis of quality of life using the World Happiness Index and Human Development Indicators

Author:

Jannani A., ,Sael N.,Benabbou F., ,

Abstract

Machine learning algorithms play an important role in analyzing complex data in research across various fields. In this paper, we employ multiple regression algorithms and statistical techniques to investigate the relationship between objective and subjective quality of life indicators and reveal the key factors affecting happiness at the international level based on data from the Human Development Index and the World Happiness Index covering the period from 2015 to 2021. The Pearson correlation analysis showed that happiness is related to the HDI score and GNI per capita. The best-performing model for forecasting happiness was the random forest regression, with a R2 score of 0.93667, a mean squared error of 0.0033048, and a root mean squared error of 0.05748, followed by the XGBoost regression and the Decision Tree regression, respectively. These models indicated that GNI per capita is the most significant feature in predicting happiness.

Publisher

Lviv Polytechnic National University

Subject

Computational Theory and Mathematics,Computational Mathematics

Reference42 articles.

1. Radford J., Joseph K. Theory In, Theory Out: The Uses of Social Theory in Machine Learning for Social Science. Frontiers in Big Data. 3, 18 (2020).

2. An Agnostic Approach;Grimmer;Annual Review of Political Science,2021

3. WHOQOL - Measuring Quality of Life| The World Health Organization. https://www.who.int/tools/whoqol.

4. Davis E., Waters E., Shelly A., Gold L. Children and Adolescents, Measuring the Quality of Life of. International Encyclopedia of Public Health. 641-648 (2008).

5. Helliwell J. F., Layard R., Sachs J. D., Neve J.-E. D., Aknin L. B., Wang S. World Happiness Report (2022). https://worldhappiness.report/ed/2022/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3