Magnetic nanoparticles for components of MRI diagnostics and electronic devices

Author:

Korsakova Alina S.ORCID,Kotsikau Dzmitry A.,Livanovich Kanstantsin S.ORCID,Shutava Tatsiana G.,Haiduk Yulyan S.,Pankov Vladimir V.ORCID

Abstract

The formation of single-phase solid solutions of iron oxide and manganese oxide with a spinel structure in MnxFe3 – xO4 system (x = 0; 0.3; 0.6; 0.8; 1.0; 1.2; 1.4; 1.8) has been established by methods of X-ray phase analysis and infrared spectroscopy. The maximum saturation magnetization was found for the composition Mn0.3 Fe2.7O4 (Ms = 68 A ⋅ m2 ⋅ kg−1 at 300 K and Ms = 85 A ⋅ m2 ⋅ kg−1 at 5 K), which is associated with a change in the cationic distribution over tetrahedral and octahedral voids. The materials obtained were stabilized in the form of colloidal solutions using a number of polyelectrolytes. It was found that poly(diallyldimethylammonium chloride) (PDDA) had the best stabilizing effect due to its structural features. A method for controlling the magnetic properties of magnetite by partial replacement of iron ions in the magnetite structure with manganese is proposed. Changing the magnitude of the magnetization and coercive force is possible by changing the degree of substitution. Relatively high values of specific magnetization, as well as uniformity of magnetic particles in size, can be of practical interest, for the manufacture of contrast agents in MRI diagnostics.

Publisher

Belarusian State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3