Characteristics of fiber-optic photoacoustic transducers with monolayer of metal nanoparticles for systems of technical diagnostics

Author:

Mikitchuk Alena P.1ORCID,Kozadaev Konstantin V.1ORCID

Affiliation:

1. Belarusian State University

Abstract

The work is devoted to the experimental study of the microstructural and morphological properties of nanostructures as part of a prototype of fiber-optic photoacoustic transducer. The transducer has been created to confirm the theoretical investigations previously obtained by the authors during the study the conditions of the most effective photoacoustic gene ration. To solve the main problem that arises when creating photoacoustic transducers, namely reducing the thickness of the absorbing layer, we used a nanostructure based on a monolayer of silver nanoparticles with size gamma-distribution, the average diameter of 35 nm with RMS-size of 12 nm. The method of simultaneous measuring both efficiency of photoacoustic conversion and frequency response of a photoacoustic transducer is proposed for the first time. The method allows experimental investigation of transduces output parameters versus the modulation mode of the optical signal. The proposed method is based on the usage of the main measurement channel for irradiating the photoacoustic transducer and a reference channel based on fiber optical coupler and photodiode. The experiment shows the reliable generation of ultrasound at frequencies of 10 –18 MHz with a prototype of photoacoustic transducer. During one hour irradiation, degradation of two-dimensional surface nanostructures has not been observed. This allows such type of photoacoustic transducer to be used as part of a new generation of technical diagnostics systems.

Publisher

Belarusian State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3