Affiliation:
1. CAMTP - Center for Applied Mathematics and Theoretical Physics
Abstract
The localization measures A (based on the information entropy) of localized chaotic eigenstates in the Poincaré-Husimi representation have a distribution on a compact interval [0;A0], which is well approximated by the beta distribution, based on our extensive numerical calculations. The system under study is the Bunimovich' stadium billiard, which is a classically ergodic system, also fully chaotic (positive Lyapunov exponent), but in the regime of a slightly distorted circle billiard (small shape parameter ") the diffusion in the momentum space is very slow. The parameter α = tH/tT , where tH and tT are the Heisenberg time and the classical transport time (diffusion time), respectively, is the important control parameter of the system, as in all quantum systems with the discrete energy spectrum. The measures A and their distributions have been calculated for a large number of ε and eigenenergies. The dependence of the standard deviation σ on α is analyzed, as well as on the spectral parameter β (level repulsion exponent of the relevant Brody level spacing distribution). The paper is a continuation of our recent paper (B. Batistić, Č. Lozej and M. Robnik, Nonlinear Phenomena in Complex Systems 21, 225 (2018)), where the spectral statistics and validity of the Brody level spacing distribution has been studied for the same system, namely the dependence of β and of the mean value < A > on α.
Publisher
Belarusian State University
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献