Stress-induced electrolyte leakage from root cells of higher plants: background, mechanism and physiological role

Author:

Hryvusevich Palina V.,Samokhina Veranika V.,Demidchik Vadim V.

Abstract

Electrolyte leakage from tissues is one of the central reactions of the plant organism to stress. It is observed under almost any type of stresses, both abiotic and biotic. The loss of key electrolytes can lead to significant changes in metabolism and, in some cases, to the death of cells or the whole organism. For a long time, it was believed, that electrolyte leakage is associated with disruption of cell integrity and plasma membranes degradation, and that it is an unregulated process. However, in recent years, a lot of evidence has been received that, in most cases, electrolyte leakage is inhibited by ion channel blockers and reversible. It means that it is associated with the transfer of ions through the membrane by transport proteins, such as ion channels. Recently, the experimental evidence has been obtained, that under salinity, drought, pathogen attack, excessive levels of heavy metals, hypo- and hyperthermia, as well as oxidative stress, the electrolyte leakage in plant cells is mediated by several types of cation and anion channels, including K+-selective channels (SKOR and GORK), anion channels (such as ALMT1) and a number of non-selective cation channels. It has been demonstrated that the primary reactions that induce electrolyte leakage are plasma membrane depolarisation and generation of reactive oxygen species, leading to the activation of redox-regulated outwardly rectifying K+ channels, such as SKOR and GORK. Potassium efflux is up-stream and stimulates the counterion flow (transport of anions) through the anion channels. The regulation of electrolyte leakage at the ion channel level and the corresponding selection for ion channel properties can become an important link in the directed control of stress resistance in higher plants. This can be applied in agriculture via breeding of stress-tolerant plant varieties, as well as developing modern amelioration techniques.

Publisher

Belarusian State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3