Data analysis using representation theory and clustering algorithms

Author:

Alkhushayni Suboh,Choi Taeyoung,Alzaleq Du'a

Abstract

This work aims to expand the knowledge of the area of data analysis through persistence homology and representations of directed graphs. To be specific, we looked for how we can analyze homology cluster groups using agglomerative Hierarchical Clustering algorithms and methods. Additionally, the Wine data, which is offered in R studio, was analyzed using various cluster algorithms such as Hierarchical Clustering, K-Means Clustering, and PAM Clustering. The goal of the analysis was to find out which cluster's method is proper for a given numerical dataset. We tried to find the agglomerative hierarchical clustering method by testing the data that will be the optimal clustering algorithm among these three; K-Means, PAM, and Random Forest methods. By comparing each model's accuracy value with cultivar coefficients, we concluded that K-Means methods are the most helpful when working with numerical variables. On the other hand, PAM clustering and Gower with Random Forest are the most beneficial approaches when using categorical variables. These tests can determine the optimal number of clustering groups, given the data set, and by doing the proper analysis. Using those the project, we can apply our method to several industrial areas such that clinical, business, and others. For example, people can make different groups based on each patient who has a common disease, required therapy, and other things in the clinical society. Additionally, people can expect to get several clustered groups based on the marginal profit, marginal cost, or other economic indicators for the business area.

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. C Language Programming System Based on Data Analysis Algorithm;Cyber Security Intelligence and Analytics;2023

2. Intelligent Repair System of Table Tennis Server Based on Data Analysis Algorithm;2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3