Author:
Aigbadon Godwin,Okoro A.U,Una Chuku,Azuka Ocheli
Abstract
The 3-D depositional environment was built using seismic data. The depositional facies was used to locate channels with highly theif zones and distribution of various sedimentary facies. The integration core data and the gamma ray log trend from the wells within the studied interval with right boxcar/right bow-shape indicate muddy tidal flat to mixed tidal flat environments. The bell–shaped from the well logs with the core data indicate delta front with mouth bar, the blocky box- car trend from the well logs with the core data indicate tidal point bar with tidal channel fill. The integration of seismic to well log tie display a good tie in the wells across the field. The attribute map from velocity analysis revealed the presence of hydrocarbons in the identified sands (A, B, C, D1, D2, D4, D5). The major faults F1, F2, F3 and F4 with good sealing capacity are responsible for hydrocarbon accumulation in the field. Detailed petro physical analysis of well log data showed that the studied interval are characterized by sand-shale inter-beds. Eight reservoirs were mapped at depth intervals of 2886m to 3533m with their thicknesses ranging from 12m to 407m. Also the Analysis of the petrophysical results showed that porosity of the reservoirs range from 14% to 28 %; permeability range from 245.70 md to 454.7md; water saturation values from 21.65% to 54.50% and hydrocarbon saturation values from 45.50% to 78.50 %. The by-passed hydrocarbons were identified and estimated in low resistivity pay sands D1, D2 at depth of 2884m – 2940m, sand D5 at depth of 3114m – 3126m respectively. The model serve as a basis for establishing facies model in the field.
Publisher
Science Publishing Corporation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献