The Potential Impacts of Anthropogenic and Climate Changes Factors on Surface Water Ecosystem Deterioration at Kenyir Lake, Malaysia

Author:

Khairul Amri Kamarudin Mohd,Abd Wahab Noorjima,Juahir Hafizan,Mohd Firdaus Nik Wan Nik,Barzani Gasim Muhammad,Ekhwan Toriman Mohd,Marcus Ata Frankie,Ghazali Adiana,Anuar Atikah,Abdullah Hanif,Izzati Hussain Nur,Hirman Azmee Syahril,Hafiz Md Saad Muhammad,Saupi Muhammad,Sujaul Islam Mir,Elfithri Rahmah

Abstract

Water ecosystem deterioration can be affected by various factors of either natural environment or physical changes in the river basin.. Data observation were made during dry season (April 2017) and wet season (December 2017). 21 sampling stations were selected along Kenyir Lake Basin. Overall, the water quality status as stated in NWQS is categorized as Class I on dry season and Class II on wet season. The major pollutants in Kenyir Lake are Total Suspended Solids (TSS), Chemical Oxygen Demand (COD), Dissolve Oxygen and pH which are contributed largely by untreated or partially treated sewage from tourism development and construction activities around the basin. The sedimentation problem level in the Kenyir Lake Basin is not in critically stage but the flow rate of water and land use activities (development around basin) will be contributed to the increasing levels of sedimentation. The good site management such as the implementation of proper site practice measures to control and treat run-off prior to discharge will ensure that the construction works will not affect the quality and quantity of the receiving waters or have significant impact upon the receiving waters.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3