Author:
Kipli Kuryati,Jiris Cripen,Kudnie Sahari Siti,Sapawi Rohan,Junaidi Nazreen,Sawawi Marini,Hong Ping Kismet,Mohd Afendi Zulcaffle Tengku
Abstract
Retinal blood vessel segmentation is crucial as it is the earliest process in measuring various indicators of retinopathy sign such as arterial-venous nicking, and focal arteriolar and generalized arteriolar narrowing. The segmentation can be clinically used if its accuracy is close to 100%. In this study, a new method of segmentation is developed for extraction of retinal blood vessel. In this paper, we present a new automated method to extract blood vessels in retinal fundus images. The proposed method comprises of two main parts and a few subcomponents which include pre-processing and segmentation. The main focus for the segmentation part is two morphological reconstructions which are the morphological reconstructions followed by the morphological top-hat transform. Then the technique to classify the vessel pixels and background pixels is Otsu’s Thresholding. The image database used in this study is the High Resolution Fundus Image Database (HRFID). The developed segmentation method accuracies are 95.17%, 92.06% and 94.71% when tested on dataset of healthy, diabetic retinopathy (DR) and glaucoma patients respectively. Overall, the performance of the proposed method is comparable with existing methods with overall accuracies were more than 90 % for all three different categories: healthy, DR and glaucoma.
Publisher
Science Publishing Corporation
Subject
Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献