Centrality measure based approach for detection of malicious nodes in twitter social network

Author:

Das Krishna,Kumar Sinha Smriti

Abstract

In this short paper, network structural measure called centrality measure based mathematical approach is used for detection of malicious nodes in twitter social network. One of the objectives in analysing social networks is to detect malicious nodes which show anomaly behaviours in social networks. There are different approaches for anomaly detection in social networks such as opinion mining methods, behavioural methods, network structural approach etc. Centrality measure, a graph theoretical method related to social network structure, can be used to categorize a node either as popular and influential or as non-influential and anomalous node. Using this approach, we have analyzed twitter social network to remove anomalous nodes from the nodes-edges twitter data set. Thus removal of these kinds of nodes which are not important for information diffusion in the social network, makes the social network clean & speedy in fast information propagation.   

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3