Machine Learning Approaches for Credit Card Fraud Detection

Author:

Venkata Suryanarayana S,N. Balaji G,Venkateswara Rao G

Abstract

With the extensive use of credit cards, fraud appears as a major issue in the credit card business. It is hard to have some figures on the impact of fraud, since companies and banks do not like to disclose the amount of losses due to frauds. At the same time, public data are scarcely available for confidentiality issues, leaving unanswered many questions about what is the best strategy. Another problem in credit-card fraud loss estimation is that we can measure the loss of only those frauds that have been detected, and it is not possible to assess the size of unreported/undetected frauds. Fraud patterns are changing rapidly where fraud detection needs to be re-evaluated from a reactive to a proactive approach. In recent years, machine learning has gained lot of popularity in image analysis, natural language processing and speech recognition. In this regard, implementation of efficient fraud detection algorithms using machine-learning techniques is key for reducing these losses, and to assist fraud investigators. In this paper logistic regression, based machine learning approach is utilized to detect credit card fraud. The results show logistic regression based approaches outperforms with the highest accuracy and it can be effectively used for fraud investigators.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Machine Learning Models in Online Payment Fraud Prediction;2024 Intelligent Methods, Systems, and Applications (IMSA);2024-07-13

2. Fraud Identification in Financial Transactions: Machine Learning-Based Anomaly Detection Method;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Enhanced particle swarm optimization-based hyperparameter optimized stacked autoencoder for credit card fraud detection;International Journal of Data Science and Analytics;2024-03-21

4. Design optimization of Solar Power Inverter using the GRA Method;REST Journal on Advances in Mechanical Engineering;2024-02-20

5. Evaluating Drinking Water Quality in Salem District Using the DEMATEL Method;REST Journal on Emerging trends in Modelling and Manufacturing;2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3